191 |
A dual-mode Q-enhanced RF front-end filter for 5 GHz WLAN and UWB with NB interference rejectionPham, Bi Ngoc 20 December 2007
The 5 GHz Wireless LAN (802.11a) is a popular standard for wireless indoor communications providing moderate range and speed. Combined with the emerging ultra Wideband standard (UWB) for short range and high speed communications, the two standards promise to fulfil all areas of wireless application needs. However, due to the overlapping of the two spectrums, the stronger 802.11a signals tend to interfere causing degradation to the UWB receiver. This presents one of the main technical challenges preventing the wide acceptance of UWB.
The research work presented in this thesis is to propose a low cost RF receiver front-end filter topology that would resolve the narrowband (NB) interference to UWB receiver while being operable in both 802.11a mode and UWB mode. The goal of the dual mode filter design is to reduce cost and complexity by developing a fully integrated front-end filter. The filter design utilizes high Q passive devices and Q-enhancement technique to provide front-end channel-selection in NB mode and NB interference rejection in UWB mode.
In the 802.11a NB mode, the filter has a tunable gain of 4 dB to 25 dB, NF of 8 dB and an IIP3 between -47 dBm and -18 dBm. The input impedance is matched at -16 dB. The frequency of operation can be tuned from 5.15 GHz to 5.35 GHz. In the UWB mode, the filter has a gain of 0 dB to 8 dB across 3.1 GHz to 9 GHz. The filter can reject the NB interference between 5.15 GHz to 5.35 GHz at up to 60 dB. The Q of the filter is tunable up to a 250 while consuming a maximum of 23.4 mW of power. The fully integrated dual mode filter occupies a die area of 1.1 mm2.
|
192 |
Turn-to-turn fault detection in transformers using negative sequence currentsBabiy, Mariya 21 September 2010 (has links)
A power transformer is one of the most important and expensive components in any power system. Power transformers can be exposed to a wide variety of abnormal conditions and faults. Internal turn-to-turn faults are the most difficult types of faults to detect within the power transformer. The IEEE Standards documents have revealed that there is no one standard way to protect all power transformers against minor internal faults such as turn-to-turn faults and at the same time to satisfy basic protection requirements: sensitivity, selectivity, and speed.<p>
This thesis presents a new, simple and efficient protection technique which is based on negative sequence currents. Using this protection technique, it is possible to detect minor internal turn-to-turn faults in power transformers. Also, it can differentiate between internal and external faults. The discrimination is achieved by comparing the phase shift between two phasors of total negative sequence current. The new protection technique is being studied via an extensive simulation study using PSCAD®/EMTDC 1 software in a three-phase power system and is also being compared with a traditional differential algorithm.<p>
Relay performance under different numbers of shorted turns of the power transformer, different connections of the transformer, different values of the fault resistances, and different values of the system parameters was investigated. The results indicate that the new technique can provide a fast and sensitive approach for identifying minor internal turn-to-turn faults in power transformers.
|
193 |
A system study on superconducting fault current limiting transformer (SFCLT) with the functions of fault current suppression and system stability improvementHayakawa, N., Kagawa, H., Okubo, H. 03 1900 (has links)
No description available.
|
194 |
Aportaciones al modelado del transformador en AFCapellán Villacián, Cándido 23 April 2012 (has links)
El diseño de modelos equivalentes es una técnica utilizada para llegar a entender el comportamiento de dispositivos trabajando a AAFF.
La presente tesis aborda este tema aplicado al transformador.
Se han recopilado y analizado los trabajos más relevantes referidos al modelado del transformador en alta frecuencia.
Tomando como base experimental un transformador trifásico de 4 kVA, se han planteado los montajes y metodologías asociadas para conseguir los modelos de baja y alta frecuencia. Los modelos obtenidos pueden ser sintetizados a circuitos RLC y su precisión evaluada mediante sencillos montajes.
Inicialmente, se somete a prueba al modelo clásico de BF para determinar la frecuencia máxima hasta la que puede ser utilizado. A continuación, se propone un nuevo modelo en AF y su respuesta es evaluada y validada mediante medidas. / Modelling is a useful technique able to provide a suitable knowledge about the behaviour of all the devices operated at high frequencies.
This thesis approaches this topic to the case of the transformer.
A state of the art about high-frequency modelling is summarized and the most relevant research works are analysed.
By using a 4 kVA three-phase power transformer, a set-up facility and the associated methodology has been proposed in order to develop a method able to obtain both the low and high-frequency models. The obtained model can be synthesized using passive LCR circuits. The accuracy of the model is then evaluated using the set-up facility.
In initial experiments, the classic low-frequency model is put to the test in order know the maximum frequency at which the model can be used. After that, a new high-frequency model is proposed and its response is evaluated and validated with measurements.
|
195 |
An improved least squares voltage phasor estimation technique to minimize the Impact of CCVT transients in protective relayingPajuelo, Eli Fortunato 21 September 2006 (has links)
Power systems are protected by numerical relays that detect and isolate faults that may occur on power systems. The correct operation of the relay is very important to maintain the security of the power system. <p>Numerical relays that use voltage measurements from the power system provided by coupling capacitor voltage transformers (CCVT) have sometimes difficulty in correctly identifying a fault in the protected area. The fundamental frequency voltage phasor resulting from these CCVT measurements may result in a deviation from the true value and therefore may locate this phasor temporarily in the incorrect operating region. This phasor deviation is due to the CCVT behavior and the CCVT introduces spurious decaying and oscillating transient signal components on top of the original voltage received from the power system in response to sudden voltage changes produced during faults. Most of the existing methods for estimating the voltage phasor do not take advantage of the knowledge of the CCVT behavior that can be obtained from its design parameters.<p>A new least squares error method for phasor estimation is presented in this thesis, which improves the accuracy and speed of convergence of the phasors obtained, using the knowledge of the CCVT behavior. The characteristics of the transient signal components introduced by the CCVT, such as frequencies and time constants of decay, are included in the description of the curve to be fitted, which is required in a least squares fitting technique. Parameters such as window size and sampling rate for optimum results are discussed.<p>The method proposed is evaluated using typical power systems, with results that can be compared to the response if an ideal potential transformer (PT) were used instead of a CCVT. The limitations of this method are found in some specific power system scenarios, where the natural frequencies of the power system are close to that of the CCVT, but with longer time constants. The accuracy with which the CCVT parameters are known is also assessed, with results that show little impact compared to the improvements achievable.
|
196 |
A dual-mode Q-enhanced RF front-end filter for 5 GHz WLAN and UWB with NB interference rejectionPham, Bi Ngoc 20 December 2007 (has links)
The 5 GHz Wireless LAN (802.11a) is a popular standard for wireless indoor communications providing moderate range and speed. Combined with the emerging ultra Wideband standard (UWB) for short range and high speed communications, the two standards promise to fulfil all areas of wireless application needs. However, due to the overlapping of the two spectrums, the stronger 802.11a signals tend to interfere causing degradation to the UWB receiver. This presents one of the main technical challenges preventing the wide acceptance of UWB.
The research work presented in this thesis is to propose a low cost RF receiver front-end filter topology that would resolve the narrowband (NB) interference to UWB receiver while being operable in both 802.11a mode and UWB mode. The goal of the dual mode filter design is to reduce cost and complexity by developing a fully integrated front-end filter. The filter design utilizes high Q passive devices and Q-enhancement technique to provide front-end channel-selection in NB mode and NB interference rejection in UWB mode.
In the 802.11a NB mode, the filter has a tunable gain of 4 dB to 25 dB, NF of 8 dB and an IIP3 between -47 dBm and -18 dBm. The input impedance is matched at -16 dB. The frequency of operation can be tuned from 5.15 GHz to 5.35 GHz. In the UWB mode, the filter has a gain of 0 dB to 8 dB across 3.1 GHz to 9 GHz. The filter can reject the NB interference between 5.15 GHz to 5.35 GHz at up to 60 dB. The Q of the filter is tunable up to a 250 while consuming a maximum of 23.4 mW of power. The fully integrated dual mode filter occupies a die area of 1.1 mm2.
|
197 |
Study and Design of Transformer-Based Integrated Passive Devices and Dual-Band Bandpass Filters for Wireless ApplicationsHuang, Chien-Hsiang 18 October 2011 (has links)
This dissertation aims to design and implement
wireless passive components using domestic integrated passive device (IPD) technology. The research focuses on exploiting novel 3-D structures for various kinds of IPD-based wireless passive
components including high-quality and high-efficiency planar transformers, baluns, filters, and combiners to achieve miniature size and high performance. A
physical model has been developed for modeling the planar transformers. In this dissertation, a scalable transformer model in integrated passive device technology is further used to correlate with the coupled-line sections of a conventional Marchand balun. This improves the efficiency of the design of planar transformers with equivalent coupled-line parameters such as the coupling factor, and even- and odd-mode characteristic impedances and quality factors. Additionally, the proposed model-based
design approach provides effective optimization techniques that incorporate geometrical and material parameters. In addition, a compact transformer-based
coupled balun bandpass filter design is proposed based on integrated circuit technology and the equivalent circuit is established. Using a planar transformer with high-density fully symmetrical wiring not only greatly reduces the component size but also provides a superior stopband rejection and selectivity. Finally, by using the spiral-shaped resonators, the dual-band third-order bandpass filter has been implemented on organic substrates. The proposed BPF design is verified to overcome the elements¡¦ parasitic effects, and thus can be miniaturized and optimized with high degree of freedom. The simulation and measurement results have good agreement for
the proposed design in this dissertation.
|
198 |
Novel Transceiver Structure with Power Management Technique by Dynamic Supply for Non-contact Vital Sign DetectionChen, Yu-Her 31 January 2012 (has links)
The power management technique is employed in the direct down-conversion non-quadrature microwave Doppler radar transceiver for the non-contact vital sign detection based on 0.18 µm CMOS technology. The overshoot and undershoot types of the transient waveform distortion and the simultaneous switching noise (SSN) caused by the high speed pulse signal will severely influence the accuracy for the vital sign detection, so that this investigation clearly analyzes the pulse period, pulse width, rise/fall times and the voltage levels of the pulse bias. In the circuit design, the low power current-reused (CRU) power amplifier (PA) can maintain enough output power by using the crucial double primary transformer (DPTF) and balun. The presented LNA with a differential inductor can provide the noise matching needed and increase the transducer gain in order to achieve the optimal power consumption and the transducer gain in the Rx mode. The excellent isolation between the Tx and Rx mode is obtained with the new parallel directed switch. The overall power consumption of the presented transceiver with the optimal pulse bias is 60% lower than the conventional transceiver with the direct current (DC) bias, and the null detection point and DC offset can be eliminated by the tunable phase shifter.
|
199 |
Highly Miniaturized Bandpass Filters for Wireless System-in-Package ApplicationsChen, Chien-Hsun 14 March 2012 (has links)
This dissertation studies and implements highly miniaturized bandpass filter designs for wireless System-in-Package (SiP) applications. Based on the coupling matrix synthesis method, the external quality factors and coupling coefficients can be extracted by selecting the proper tapped-line feeding position and coupling spacing in geometrical configuration. Despite their high performance, most conventional microstrip bandpass filter designs require a bulky area for achieving, making them difficult to implement SiP applications. This dissertation first develops a stacked LC resonator and a stacked spiral resonator (SSR) in an embedded passive substrate (EPS) for realizing miniature single- and multi-band bandpass filters. Moreover, multiple transmission zeros created on both sides of each passband provide high stopband roll-off rates. The designed performance and size are comparable to those of low-temperature co-fired ceramic (LTCC) bandpass filters. As another conventional means of implementing RF passive components, the integrated passive device (IPD) process can produce large-value inductors and high-density capacitors, simultaneously. This dissertation fully utilizes the advantages of IPD technology to implement very compact bandpass filter designs with multiple transmission-zero frequencies at stopband by using a high-density wiring planar transformer configuration. Furthermore, due to the fully symmetric geometry, the transformer-coupled bandpass filter can be easily converted into a balun bandpass filter, capable of providing a superior balance performance with a significantly higher common mode rejection ratio (CMRR) level. The electromagnetic (EM) simulation results, as obtained by using Ansys-Ansoft HFSS, agree with the measurement results for all of the proposed designs in this dissertation.
|
200 |
Design of Transformer Terminal Unit for Transformer Management SystemHuang, Jhao-Bi 11 July 2012 (has links)
With the economic development, the high quality has become a critical issue for service continuous of power companies. To ensure the stable power supply, the asset management of power equipments is applied to prevent the system outage. With voluminous distribution transformers over very wide area, the real time monitoring of temperature has been included in the scope of smart grid. During recent years, the service outage due to transformer overloading has caused customer panic as well as deterioration of service quality.
This thesis develops the Transformer Terminal Unit (TTU) by integration of computer chip for power consumption, DSP and sampling circuit of temperature measurement to achieve the functions of real time monitoring of transformer operation condition. When an abnormal operation condition such as overloading or high oil temperature occurs, the TTU can report the contingency back to the control station via the hybrid communication system so that the distribution system operators can take remedy action to prevent the contingency. The actual loading and temperature of transforms are also measured and collected in this study to develop the relationship of temperature and loading levels. By collecting transformer temperature, the power demand of a transformer can be estimated and the load shedding can then be activated to prevent the problem of overloading when the temperature exceeds the operation constraint.
|
Page generated in 0.0884 seconds