• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 6
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Membrane Domain of Plant 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase: Targeting, Topology, and Function

Denbow, Cynthia J. 06 May 1997 (has links)
The rate limiting step in isoprenoid biosynthesis is catalyzed by 3-hydroxy-3-methylglutaryl CoA reductase (HMGR, EC 1.1.1.34). In plants, HMGR is encoded by small gene families whose members are differentially expressed. In tomato, hmg2 was previously isolated and sequenced. We report the isolation and sequence analysis of a clone (pCD4) encompassing exon I of tomato hmg1 which encodes the putative membrane domain. Sequence comparisons of plant HMGR proteins reveal two hydrophobic stretches within the amino terminus which are highly conserved among species. Using in vitro transcription and translation systems, the membrane domain structure of two tomato HMGR isoforms, HMG1 and HMG2, were analyzed. Results from these experiments reveal that tomato HMGRs are targeted to microsomal membranes in a cotranslational fashion that does not involve cleavage of an N-terminal targeting peptide. Membrane topography of HMGR was revealed by protease protection studies, indicating that both tomato HMGRs span the membrane two times such that both the C- and N-termini are located within the cytosol. HMG2 but not HMG1 was glycosylated in the in vitro system. Deletion of the hmg1 5' untranslated regions and sequences encoding the first six highly charged amino acids resulted in inefficient translation in vitro. However, targeting to microsomes was unchanged. HMG1 membrane domain was tagged with a FLAG epitope to facilitate in vivo studies. Agrobacterium-mediated transformation was used to introduce the tagged hmg1 gene into two Nicotiana tabacum cell lines, BY-2 and KY-14. The slow growth kinetics of KY-14 prevented effective recovery of transformed lines, however, Northern analyses of BY-2 showed that the hmg1 transgene was expressed. Comparisons of BY-2 and KY-14 revealed differences in defense responses to elicitor treatment. BY-2 cells showed minimal defense capabilities, whereas KY-14 cells were rapidly induced as indicated by increased HMGR enzyme activity and browning of the cells. HMGR enzyme activity was decreased in both KY-14 and BY-2 cells following sterol treatment, but the reduction was more pronounced in KY-14 cells. Thus transgenic BY-2 cells may be useful in future in vivo immunolocalization studies, but analyses of HMGR transcriptional regulation and regulated degradation will require use of the more responsive KY-14 cells.. / Ph. D.
2

Functional characterization of the attachment glycoprotein of Nipah virus: role in fusion, inhibition of henipavirus infection, generation of chimeric proteins, and assembly of chimeric viruses

Sawatsky, Bevan 12 September 2007 (has links)
Nipah virus (NiV) and Hendra virus (HeV) have been identified as the causes of outbreaks of fatal meningitis, encephalitis, and respiratory disease in Australia, Malaysia, Bangladesh, and India from 1994 until 2004. In order to accommodate the unique genomic characteristics of NiV and HeV, a new genus within the family Paramyxoviridae was created, named Henipavirus. NiV encodes two surface glycoproteins: the attachment glycoprotein (G) binds to the cellular receptor for the virus, while the fusion glycoprotein (F) mediates membrane fusion between the virus and cell membranes. Expression of F and G in the same cell results in cell-cell fusion in transfected cell monolayers, while expression of F and G on their own in cell monolayers does not result in fusion. Co-culture of singly-transfected F and G cells also does not result in fusion. Expression of NiV G in transgenic CRFK cells results in resistance to NiV- and HeV-induced cytopathic effect. Additionally, neither NiV nor HeV nucleic acid could be detected in CRFK-NiV G that had been exposed to NiV or HeV. NiV G expression also prevents NiV F+NiV G-mediated cell-cell fusion, but does not affect cell surface expression of either virus receptor, ephrin-B2 and ephrin-B3. Chimeric glycoproteins derived from NiV G and CDV H were constructed and characterized. None of the chimeric glycoproteins were able to fuse when coexpressed with either NiV F or CDV F. Only one of the chimeric glycoproteins (H145/G458) was detected on the cell surface by immunofluorescence assay (IFA). None of the chimeric glycoproteins altered cell surface expression levels of ephrin-B2 and ephrin-B3. Finally, recombinant NiV genomes (rNiV and rNiV eGFPG) were constructed, as well as chimeric CDV genomes with NiV ORF substitutions (rCDV eGFPH NiVFG and rCDV eGFPH NiVMFG). The only chimeric virus that was generated, rCDV eGFPH NiVFG, was assessed for its release from infected cells. rCDV eGFPH NiVFG was poorly released from infected cells without a freeze-thaw cycle, but was also found to induce the cellsurface down-regulation of the viral receptors ephrin-B2 and ephrin-B3. / October 2007
3

Functional characterization of the attachment glycoprotein of Nipah virus: role in fusion, inhibition of henipavirus infection, generation of chimeric proteins, and assembly of chimeric viruses

Sawatsky, Bevan 12 September 2007 (has links)
Nipah virus (NiV) and Hendra virus (HeV) have been identified as the causes of outbreaks of fatal meningitis, encephalitis, and respiratory disease in Australia, Malaysia, Bangladesh, and India from 1994 until 2004. In order to accommodate the unique genomic characteristics of NiV and HeV, a new genus within the family Paramyxoviridae was created, named Henipavirus. NiV encodes two surface glycoproteins: the attachment glycoprotein (G) binds to the cellular receptor for the virus, while the fusion glycoprotein (F) mediates membrane fusion between the virus and cell membranes. Expression of F and G in the same cell results in cell-cell fusion in transfected cell monolayers, while expression of F and G on their own in cell monolayers does not result in fusion. Co-culture of singly-transfected F and G cells also does not result in fusion. Expression of NiV G in transgenic CRFK cells results in resistance to NiV- and HeV-induced cytopathic effect. Additionally, neither NiV nor HeV nucleic acid could be detected in CRFK-NiV G that had been exposed to NiV or HeV. NiV G expression also prevents NiV F+NiV G-mediated cell-cell fusion, but does not affect cell surface expression of either virus receptor, ephrin-B2 and ephrin-B3. Chimeric glycoproteins derived from NiV G and CDV H were constructed and characterized. None of the chimeric glycoproteins were able to fuse when coexpressed with either NiV F or CDV F. Only one of the chimeric glycoproteins (H145/G458) was detected on the cell surface by immunofluorescence assay (IFA). None of the chimeric glycoproteins altered cell surface expression levels of ephrin-B2 and ephrin-B3. Finally, recombinant NiV genomes (rNiV and rNiV eGFPG) were constructed, as well as chimeric CDV genomes with NiV ORF substitutions (rCDV eGFPH NiVFG and rCDV eGFPH NiVMFG). The only chimeric virus that was generated, rCDV eGFPH NiVFG, was assessed for its release from infected cells. rCDV eGFPH NiVFG was poorly released from infected cells without a freeze-thaw cycle, but was also found to induce the cellsurface down-regulation of the viral receptors ephrin-B2 and ephrin-B3.
4

Functional characterization of the attachment glycoprotein of Nipah virus: role in fusion, inhibition of henipavirus infection, generation of chimeric proteins, and assembly of chimeric viruses

Sawatsky, Bevan 12 September 2007 (has links)
Nipah virus (NiV) and Hendra virus (HeV) have been identified as the causes of outbreaks of fatal meningitis, encephalitis, and respiratory disease in Australia, Malaysia, Bangladesh, and India from 1994 until 2004. In order to accommodate the unique genomic characteristics of NiV and HeV, a new genus within the family Paramyxoviridae was created, named Henipavirus. NiV encodes two surface glycoproteins: the attachment glycoprotein (G) binds to the cellular receptor for the virus, while the fusion glycoprotein (F) mediates membrane fusion between the virus and cell membranes. Expression of F and G in the same cell results in cell-cell fusion in transfected cell monolayers, while expression of F and G on their own in cell monolayers does not result in fusion. Co-culture of singly-transfected F and G cells also does not result in fusion. Expression of NiV G in transgenic CRFK cells results in resistance to NiV- and HeV-induced cytopathic effect. Additionally, neither NiV nor HeV nucleic acid could be detected in CRFK-NiV G that had been exposed to NiV or HeV. NiV G expression also prevents NiV F+NiV G-mediated cell-cell fusion, but does not affect cell surface expression of either virus receptor, ephrin-B2 and ephrin-B3. Chimeric glycoproteins derived from NiV G and CDV H were constructed and characterized. None of the chimeric glycoproteins were able to fuse when coexpressed with either NiV F or CDV F. Only one of the chimeric glycoproteins (H145/G458) was detected on the cell surface by immunofluorescence assay (IFA). None of the chimeric glycoproteins altered cell surface expression levels of ephrin-B2 and ephrin-B3. Finally, recombinant NiV genomes (rNiV and rNiV eGFPG) were constructed, as well as chimeric CDV genomes with NiV ORF substitutions (rCDV eGFPH NiVFG and rCDV eGFPH NiVMFG). The only chimeric virus that was generated, rCDV eGFPH NiVFG, was assessed for its release from infected cells. rCDV eGFPH NiVFG was poorly released from infected cells without a freeze-thaw cycle, but was also found to induce the cellsurface down-regulation of the viral receptors ephrin-B2 and ephrin-B3.
5

CD8 T cell differentiation during immune responses

De Campos Pereira Lemos, Sara Sofia 23 May 2014 (has links) (PDF)
CD8 T cells are essential for the elimination of intracellular pathogens and tumor cells. Understanding how naïve CD8 T cells differentiate into effector cells capable of eliminating pathogens and to generate adequate memory cells during immune responses is fundamental for optimal T cell vaccine design. In this PhD thesis work we addressed two central questions: 1) What are the mechanisms by which early effector T cells could act as pro-inflammatory effectors? And what is their role in the immune response? 2) How heterogeneous are CD8 responses? Could different pathogens modulate CD8 T cell differentiation programs and be responsible for CD8 cell-to-cell heterogeneity? Could they also generate memory cells with different protection capacities? To address these questions related to the diversity of CD8 T cell differentiation during immune responses, we used the single cell RT-PCR technique to detect ex vivo expression of mRNA in each individual cell, and Brefeldin A injected mice to detect ex vivo intracellular proteins. As experimental system to evaluate in vivo cell activation we used T cell receptor transgenic (TCR-Tg) CD8 T cells. Since the use of TCR-Tg cells to study immune responses has been subjected to criticism (due to high frequency of naïve-precursor transfers), in a first Ms. we compared the behavior of TCR-Tg and endogenous (non-transgenic and present at low frequency) cells in the same mouse. We found fully overlapping behavior between these two cell populations, which reinforced the advantage of using TCR-Tg cells to study CD8 immune responses. In addition, we concluded that the frequency of naïve-precursors do not induce diversity on CD8 T cell differentiation patterns. In a second Ms. we evaluated the impact of different pathogens in the diversity of CD8 T cell properties during two different immune responses: OT1 TCR-Tg cells (specific for OVA antigen) in the response to LM-OVA (Listeria Monocytogenes expressing OVA) infection; and P14 TCR-Tg cells (specific for GP33 epitope) in the response to Lymphocytic choriomeningitis vírus (LCMV) infection. We found that OT1 and P14 cells had different properties. As this difference could also be attributed to the different TCR avidity between OT1 and P14 cells, we then compared the behavior of P14 and OT-1 cells in the same mouse, co-injected with LM-OVA and LM-GP33. Since no differences were then detected, these results demonstrated that priming with different pathogens generates CD8 T cells with different characteristics that are not determined by TCR usage, but rather by the infection context. In addition, when looking for the protection capacity of endogenous CD8 memory cells generated in bacterial or viral context, we found that memory cells generated after LCMV priming were more efficient in responding to a second challenge, than memory cells generated after LM-GP33 priming. We also found that this better protection is associated with a T cell effector memory (TEM) phenotype associated with the LCMV infection, in contrast with a T cell central memory (TCM) phenotype generated after LM-OVA infection. These results demonstrate that different pathogens are responsible for diversity of CD8 T cell differentiation patterns and that even when distinct pathogens are efficiently eliminated during the primary immune response the quality of the memory generated may differ. In a third Ms. we studied the mechanisms by which effector CD8 T cells attracted other cell types in the early days of an immune response. We used two experimental systems: the response of OT1 TCR-Tg cells to LM-OVA infection; and the response of anti-HY TCR-Tg cells to male cells ("sterile"-non infectious context). In both cases we found that immediately after activation, CD8 T cells expressed high levels of pro-inflammatory cytokines and chemokines (such as TNFα, XCL1, CCL3 and CCL4). (...)
6

CD8 T cell differentiation during immune responses / Différentiation des cellules T CD8 pendant la réponse immunitaire

Lemos, Sara Sofia de Campos Pereira 23 May 2014 (has links)
Les lymphocytes T CD8 ont un rôle essentiel dans la protection contre les agents pathogènes intracellulaires et la progression tumorale. Ainsi, la compréhension de la diversité des mécanismes de différenciation des lymphocytes T CD8 naïfs en cellules effectrices, ainsi qu’en cellules mémoires compétentes, est fondamentale pour le développement efficace de vaccins à cellules T. Dans ce travail de thèse, nous avons abordé deux questions centrales : (1)Très tôt après l’activation des cellules T CD8, quels sont les mécanismes par lesquels les cellules T effectrices agissent comme effecteurs pro-inflammatoires en recrutant d’autres cellules? Et quel est leur rôle dans la réponse immunitaire? (2) Quel est le rôle du contexte infectieux dans le programme de différenciation des lymphocytes T CD8 ? Est-il responsable de l’hétérogénéité des cellules répondeuses et a-t-il un rôle dans les différents effets protecteurs des cellules mémoires? Afin de répondre à ces questions, nous avons choisit d’utiliser des cellules T CD8 exprimant un récepteur pour l’antigène transgéniques (TCR-Tg) pour suivre la différentiation in vivo des lymphocytes T CD8. De plus, la méthode de RT-PCR sur des séries de cellules uniques, nous a permis d’analyser la co-expression des ARNm dans ces cellules. Comme l’utilisation à haute fréquence de cellules TCR-Tg a été fortement critiquée, nous avons comparé la différenciation de ces cellules avec celle des cellules endogènes (non transgéniques et rares). Dans ce premier manuscrit nous avons observé un comportement similaire, ce qui a renforcé l'avantage d'utiliser des cellules TCR Tg pour étudier les réponses immunitaires des lymphocytes T CD8. De plus, nous avons conclu que la diversité des réponses immunitaires des lymphocytes T CD8 n’est pas conditionnée par la fréquence de cellules naïves. Dans un deuxième manuscrit, nous avons comparé la réponse des cellules OT1 TCR-Tg (spécifiques de l’antigène OVA) à l'infection bactérienne LM-OVA (Listeria Monocytogènes exprimant OVA) avec la réponse des cellules P14 TCR-Tg (spécifiques de l’épitope GP33) à l’infection par le virus LCMV. Nous avons montré que les cellules OT1, stimulées par l’OVA dans un contexte bactérien (LM-OVA), présentent un profil d’expression génique distinct de celui des cellules P14 stimulées par le GP33 dans un contexte viral (LCMV). Nous avons également co-stimulé les cellules P14 et OT1 dans une même souris suivant le même contexte bactérien avec LM-GP33 et LM-OVA. Dans ce cas, nous n’avons pas observé de différence dans le profil d’expression génique. L’ensemble des résultats démontrent que les stimulations spécifiques des cellules T CD8 par différents agents pathogènes génèrent des cellules T CD8 présentant des caractéristiques différentes qui ne sont pas déterminées par la spécificité du TCR mais plutôt par le contexte infectieux. De plus, nous avons montré que les cellules mémoires endogènes résultant de la stimulation des CD8 en présence de LCMV ont été plus efficaces après une deuxième réponse immunitaire que des cellules mémoires générées après stimulation avec LM-GP33 (bactérie). Nous avons également observé que la protection plus efficace dans le contexte viral est associée à des cellules T CD8 qui présentent un phénotype de cellules T mémoires effectrices (TEM) tandis que les cellules T CD8 générées dans un contexte bactérien ont plutôt un phénotype associé aux cellules T mémoires centrales (TCM). Ces résultats démontrent que différents pathogènes induisent différents profils de différentiation des cellules T CD8 et que malgré l’élimination efficace des différents pathogènes dans une réponse primaire, la qualité des cellules mémoires générées au cours de cette réponse peut être différente. Dans un troisième manuscrit, nous avons étudié les mécanismes de recrutement d’autres cellules par les lymphocytes T CD8 activés à un temps précoce de la réponse immunitaire. (...) / CD8 T cells are essential for the elimination of intracellular pathogens and tumor cells. Understanding how naïve CD8 T cells differentiate into effector cells capable of eliminating pathogens and to generate adequate memory cells during immune responses is fundamental for optimal T cell vaccine design. In this PhD thesis work we addressed two central questions: 1) What are the mechanisms by which early effector T cells could act as pro-inflammatory effectors? And what is their role in the immune response? 2) How heterogeneous are CD8 responses? Could different pathogens modulate CD8 T cell differentiation programs and be responsible for CD8 cell-to-cell heterogeneity? Could they also generate memory cells with different protection capacities? To address these questions related to the diversity of CD8 T cell differentiation during immune responses, we used the single cell RT-PCR technique to detect ex vivo expression of mRNA in each individual cell, and Brefeldin A injected mice to detect ex vivo intracellular proteins. As experimental system to evaluate in vivo cell activation we used T cell receptor transgenic (TCR-Tg) CD8 T cells. Since the use of TCR-Tg cells to study immune responses has been subjected to criticism (due to high frequency of naïve-precursor transfers), in a first Ms. we compared the behavior of TCR-Tg and endogenous (non-transgenic and present at low frequency) cells in the same mouse. We found fully overlapping behavior between these two cell populations, which reinforced the advantage of using TCR-Tg cells to study CD8 immune responses. In addition, we concluded that the frequency of naïve-precursors do not induce diversity on CD8 T cell differentiation patterns. In a second Ms. we evaluated the impact of different pathogens in the diversity of CD8 T cell properties during two different immune responses: OT1 TCR-Tg cells (specific for OVA antigen) in the response to LM-OVA (Listeria Monocytogenes expressing OVA) infection; and P14 TCR-Tg cells (specific for GP33 epitope) in the response to Lymphocytic choriomeningitis vírus (LCMV) infection. We found that OT1 and P14 cells had different properties. As this difference could also be attributed to the different TCR avidity between OT1 and P14 cells, we then compared the behavior of P14 and OT-1 cells in the same mouse, co-injected with LM-OVA and LM-GP33. Since no differences were then detected, these results demonstrated that priming with different pathogens generates CD8 T cells with different characteristics that are not determined by TCR usage, but rather by the infection context. In addition, when looking for the protection capacity of endogenous CD8 memory cells generated in bacterial or viral context, we found that memory cells generated after LCMV priming were more efficient in responding to a second challenge, than memory cells generated after LM-GP33 priming. We also found that this better protection is associated with a T cell effector memory (TEM) phenotype associated with the LCMV infection, in contrast with a T cell central memory (TCM) phenotype generated after LM-OVA infection. These results demonstrate that different pathogens are responsible for diversity of CD8 T cell differentiation patterns and that even when distinct pathogens are efficiently eliminated during the primary immune response the quality of the memory generated may differ. In a third Ms. we studied the mechanisms by which effector CD8 T cells attracted other cell types in the early days of an immune response. We used two experimental systems: the response of OT1 TCR-Tg cells to LM-OVA infection; and the response of anti-HY TCR-Tg cells to male cells (“sterile”-non infectious context). In both cases we found that immediately after activation, CD8 T cells expressed high levels of pro-inflammatory cytokines and chemokines (such as TNFα, XCL1, CCL3 and CCL4). (...)

Page generated in 0.1 seconds