• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An improved bus signal priority system for networks with nearside bus stops

Kim, Wonho 17 February 2005 (has links)
Bus Signal Priority (BSP), which has been deployed in many cities around the world, is a traffic signal enhancement strategy that facilitates efficient movement of buses through signalized intersections. Most BSP systems do not work well in transit networks with nearside bus stop because of the uncertainty in dwell time. Unfortunately, most bus stops on arterial roadways are of this type in the U.S. This dissertation showed that dwell time at nearside bus stops could be modeled using weighted least squares regression. More importantly, the prediction intervals associated with the estimate dwell time were calculated. These prediction intervals were subsequently used in the improved BSP algorithm that attempted to reduce the negative effects of nearside bus stops on BSP operations. The improved BSP algorithm was tested on urban arterial section of Bellaire Boulevard in Houston, Texas. VISSIM, a micro simulation model was used to evaluate the performance of the BSP operations. Prior to evaluating the algorithm, the parameters of the micro simulation model were calibrated using an automated Genetic Algorithm based methodology in order to make the model accurately represent the traffic conditions observed in the field. It was shown that the improved BSP algorithm significantly improved the bus operations in terms of bus delay. In addition, it was found that the delay to other vehicles on the network was not statistically different from other BSP algorithms currently being deployed. It is hypothesized that the new approach would be particularly useful in North America where there are many transit systems that utilize nearside bus stops in their networks.
2

Evaluating the Transit Signal Priority Impacts along the U.S. 1 Corridor in Northern Verginia

Kamdar, Vaibhavi Killol 12 January 2005 (has links)
Heavy traffic volumes in peak hours accompanied by closely located signalized intersections and nearside bus stops on U.S. 1, result in congestion and traffic delays that bus transit may be able to alleviate to some extent. The capital investment and operating costs of other transit solutions such as "Bus Rapid Transit" and "Heavy Rail Transit" projects were found to be cost prohibitive compared to bus transit signal priority (TSP) options. Successful implementation of a limited TSP pilot project led local authorities to conclude that TSP should be extended to the full length of the Fairfax Connector bus routes on U.S. 1. This research focused on testing the impacts of a ten second green extension priority strategy for all the northbound transit buses in the morning peak period at twenty-six signalized intersections along U.S. 1. A micro simulation model VISSIM 3.7 was used to analyze the impacts of TSP. The simulation analysis indicates that the Fairfax Connector buses might benefit from the green extension strategy. Overall, improvements of up to 4% for transit travel time savings and 5-13% reduction in control delay for transit vehicles were observed. Considering all side street traffic, the total increase in maximum queue length might be up to 1.23%. Future research possibilities proposed include the evaluation of different priority strategies such as an early green, red truncation and queue jumps. Impacts of using a dedicated lane for transit buses along with TSP can also be evaluated. Conditional transit signal priority may also include bus occupancy levels and bus latenesses. / Master of Science
3

Evaluation of bus priority strategiesin coordinated traffic signal systems

Wahlstedt, Johan January 2014 (has links)
Increasing congestion and environmental concerns have evoked an interest in promoting urban Public Transport (PT) the last decades. In 2012 the City of Stockholm adopted an “Urban mobility strategy” stating that public transport, cycling and walking should be prioritised over cars in central Stockholm. One of the most important factors influencing the modal choice is the travel time ratio between car and PT travel. According to earlier studies Public Transport Traffic Signal Priority (PTSP) can reduce travel times for public transport with only small negative impacts on other traffic. Conditional PTSP can also help to regulate the PT service. Thus PTSP may support drivers’ decision to change travel mode from car to PT, thus supporting adopted policy goals. Conventional control strategies for coordinated traffic signals have pre-set timings based on traffic surveys. Some traffic adaptation based on real time detector actuations can also take place within the frames of the pre-set cycle time. PTSP changes the signal timings, within pre-set limits, when a PT vehicle is detected. Self-optimising control strategies use a traffic model to predict the traffic flows from traffic counts, and determine the signal changes in real-time by minimising a cost function including delay, number of stops etc. PTSP is included directly in the optimisation by giving PT vehicles a higher weight compared to cars. In this thesis the fundamentals of signal control theory are reviewed as well as unconditional and conditional PTSP criteria and strategies. A simulation based method for evaluation of impacts of different PTSP strategies in coordinated controlled traffic signals is implemented. The simulation setup includes Software-In-the-Loop (SIL) signal controller simulators running the same control logic as used in field. Such simulation models can be useful to test and fine tune PTSP before being implemented in field. Simulations with a SIL setup also enable comparisons of signal control strategies or systems on equal terms, not practically or economically possible in field studies. The implemented SIL simulation model was used to evaluate the impacts on buses and other traffic from the different PTSP functions used in the “PRIBUSS” PTSP method. Short green time extensions showed travel time reductions for buses, with almost no travel time increase for other traffic. Long green time extensions gave somewhat larger benefits for the buses, but more delay to other traffic. Red truncation gave less travel time savings to the prioritised buses and more extra delay for cross street traffic, compared to green extensions. Double red truncation and Extra phase showed some additional travel time savings to the buses, but had the largest negative impact on other traffic. A combination of PRIBUSS functions showed the best results. Depending on the structure of the signal coordination and the location of the bus stops different PTSP functions may be needed. Based on the conclusions from the evaluation of the different PRIBUSS functions a conditional “differential on-time-status” based PTSP strategy was proposed and tested in the SIL simulation environment. The proposed method is focusing on direct travel time savings as well as on reduced bus bunching. The two self-optimising signal control systems Utopia/Spot and ImFlow were tested, and their impacts were compared to conventional control including PTSP with the PRIBUSS method in a SIL simulation environment. The aim was to test if commercially available self-optimising control systems can reduce the overall delay per person by applying more sophisticated PTSP. Both systems reduced the delay for buses, cyclists and pedestrians at a cost of increased delay and increased number of stops compared to the existing conventional control used in field. The total delay for all road users was reduced substantially. / Intresset för att påverka resvanorna i våra städer så att kollektivtrafikandelen ökar har växt de senaste decennierna på grund av en ökad trängsel i gatunätet samt ökad miljömedvetenhet. Stockholms stad har antagit ”Framkomlighetsstrategin” som innebär att kollektivtrafik, gång och cykel ska prioriteras framför biltrafik i centrala Stockholm. En av de faktorer som påverkar färdmedelsvalet mest är restidskvoten mellan bil och kollektivtrafik. Tidigare studier har visat att kollektivtrafikprioritering i trafiksignaler kan minska körtiden för kollektivtrafiken väsentligt, med små eller inga negativa konsekvenser för övrig trafik. Villkorlig prioritering kan dessutom förbättra kollektivtrafikens regularitet. Kollektivtrafikprioritering i trafiksignaler kan på så sätt hjälpa till att förbättra kollektivtrafikens attraktivitet och därigenom öka kollektivtrafikandelen. Samordnade trafiksignaler styrda med konventionell teknik har en fast tidsättning framtagen med insamlade historiska trafikdata som grund. Viss trafikstyrning kan åstadkommas inom ramen för den fasta omloppstiden. Om bussprioritering finns ändras signalväxlingen av prioriteringsfunktionerna när en buss detekteras, inom vissa begränsningar för att hålla ihop det samordnade systemet. Självoptimerande signalstyrning bygger på att fordonsrörelserna genom systemet predikteras med en trafikmodell utifrån trafikräkningar med detektorer. Signaltidsättningen bestäms sedan i realtid genom att minimera en kostnadsfunktion som innehåller fördröjning, antal stopp mm. för de modellerade fordonsrörelserna. Kollektivtrafiken prioriteras genom att dess fordon detekteras separat från övrig trafik, och ges en högre vikt i optimeringen av signaltidssättningen. I denna avhandling beskrivs de teoretiska grunderna för trafiksignalstyrning, liksom metoder och kriterier för villkorlig och ovillkorlig signalprioritering av kollektivtrafik. En simuleringsbaserad metod för att utvärdera effekterna av olika signalprioritering har implementerats. Denna använder styrapparatsimulatorer med samma programmering som styrapparaterna på gatan, inklusive prioriteringsfunktioner. Sådana simuleringar kan vara ett användbart verktyg för att justera in prioriteringsfunktionerna innan dessa implementeras i signalstyrningen på gatan. Simuleringar med styrapparatsimulatorer möjliggör också jämförelser av olika styrstrategier under kontrollerade förhållanden som inte vore praktiskt, eller ekonomiskt möjliga att genomföra i fält. I den framtagna simuleringsmiljön har effekterna av de olika prioriteringsfunktionerna i PRIBUSS utvärderats. Korta (maxtids-)förlängningar gav körtidsvinster för bussar och knappast några restidsförsämringar för övrig trafik. Långa förlängningar (fråntidsförlängning och återtagen start) gav ytterligare restidsvinster för busstrafiken, men ökad fördröjning för övrig trafik. Avkortning gav, jämfört med förlängningar, mindre restidsvinster för busstrafiken och mer störning för övrig trafik. De mer komplicerade funktionerna Dubbel avkortning och extrafas gav viss ytterligare restidsvinst för bussarna, men hade den största inverkan på övrig trafik. Bäst resultat uppkom dock med en kombination av PRIBUSS funktioner. Beroende på samordningens struktur och busshållplatsernas placering i förhållande till trafiksignalerna kan olika prioriteringsfunktioner ge större eller mindre nytta. Baserat på utvärderingen av de olika PRIBUSS funktionernas effekter på bussar och övrig trafik har en tidhållningsbaserad differentierad prioriteringsstrategi föreslagits, som förutom att skapa direkta restidvinster också försöker motverka ihopklumpning av bussar. Denna strategi har implementerats och testats i den framtagna simuleringsmiljön. Med hjälp av simuleringar har de självoptimerande signalstyrsystemen Utopia/Spot och ImFlow testats och jämförts med konventionell styrning, inklusive bussprioritering med PRIBUSS. Syftet med denna studie var att undersöka om fördröjningen per person i trafiknätet kan minskas genom bättre kollektivtrafikprioritering med hjälp av ett kommersiellt tillgängligt självoptimerande signalstyrsystem. De båda testade systemen gav minskad fördröjning för kollektivtrafik, gående och cyklister, men ökad fördröjning och antal stopp för biltrafik. Den totala fördröjningen minskades betydligt med de båda testade självoptimerande signalstyrsystemen. / <p>QC 20140513</p>

Page generated in 0.0929 seconds