• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Photoemission Studies Of Metal-Insulator Transition In Some Oxide Bronzes

Chakraborty, Anirban 10 1900 (has links) (PDF)
Metal-insulator transition is one of the most important properties observed in certain materials which has been studied widely using a wide range of experimental techniques as well as theoretical models. This kind of a transition, observed in several systems, can take place by tuning several parameters such as pressure, temperature or the composition itself. In this thesis we study a few selected transition metal oxide bronzes exhibiting such phenomenon, each of which has a different cause for undergoing the transition. In Chapter 1, we discuss briefly several mechanisms and models that have been used to understand metal-insulator transitions. We also briefly discuss the role of disorder, electron-electron correlations or both to understand the different ways in which such transitions can occur. In Chapter 2, we describe the different experimental as well as theoretical techniques that have been used in this thesis. In Chapter 3, we study the fermi-edge of the NaxWO3 systems, as a function of x, to understand the origin of the metal-insulator transition occurring in this series of compounds. The system undergoes a metal-insulator transition at the critical composition xc=0.25, below which it is found to be insulating. At the lowest temperature, the very low x compounds behave as disordered and correlated materials. Above the transition composition, the compounds behave as disordered and correlated metals. In the insulating regime, close to the critical composition, we find that the system behaves in a way that cannot be described by any known theories for metals or insulators. We have also done a systematic analysis of the Fermi-edge data for the insulating samples as a function of temperature and we find that they cannot be described by any of the known theories for solid-state systems. Further development is necessary in the theoretical side to understand and interpret our data. In Chapter 4, we study the angle-resolved photoemission data for the highly metallic sodium tungsten bronze Na0.8WO3. We have synthesized the single-crystals by high-temperature electrochemical synthesis and we have performed angle-resolved photoemission experiments to understand the band structure of this system. The experimental results have been supported by theoretical calculations. We find that the rigid band model is valid in describing the electronic structure in these systems. We also find the existence of electron-like pockets along certain symmetry directions. Further, photon energy dependent studies on the x=0.8 sample suggest that there is a difference in the surface with the bulk of the sample. The bulk is perfectly periodic and ordered, whereas the surface shows a distortion due to the rotation or deformation of the WO6 octahedra. In Chapter 5, we have studied the electronic structure of the low dimensional molybdenum oxide La2Mo2O7, which is expected to have a charge density wave(CDW)driven metal-insulator transition around 125K. We indeed observed the presence of CDWs in this system, which was observed in the angle-resolved photoemission spectra as back-folding of bands below the transition temperature. We have also studied the temperature evolution of the bands close to the Fermi level and we see a gradually weakening and finally disappearance of the back-folded bands close to and above the transition temperature. We have studied the angle-integrated spectra of this system from which we conclude that La2Mo2O7 is a CDW non-Fermi liquid system. We have also evaluated the total and partial density of states in this system using Vienna ab-initio simulation package. We find the results consistent with our experimental findings. In Chapter 6, we study the metal-insulator transition in another low-dimensional molybdenum oxide KMo4O6, which is expected to show a metal-insulator transition around 120K due to the formation of spin-density waves. We observed back-folding of bands with lower intensities at low temperature, suggesting the formation of spin density waves in the system. The angle-integrated spectra suggested that the system is a non-CDW non-Fermi liquid system. We have also evaluated the density of states and the results are in agreement with our experimental findings. In conclusion we have investigated the electronic structure of different classes of systems and we have given clue to the origin of the metal-insulator transition in these systems.
2

Elektrochemische Untersuchungen an Elektroden aus Übergangsmetalloxidbronzen

Gabel, Juliane 09 February 2007 (has links) (PDF)
Übergangsmetalloxidbronzen (TMOB) – Verbindungen mit der allgemeinen chemischen Summenformel AxByOz (A = Element der Gruppen 1, 2, 11, 12, 13, NH4+ oder Kombination; B = Übergangsmetall) – sind seit längerem als Material für ionensensitive Festkörperelektroden bekannt. Sie reagieren als Elektroden in elektrochemischen Messungen auf Ionen in wässrigen Elektrolyten in höchst unterschiedlicher Weise. Bis heute gibt es dazu nur wenige systematische vergleichende Untersuchungen, die von der Präparation der Bronzen, der Charakterisierung ihrer Eigenschaften bis zur Untersuchung ihrer Elektrodeneigenschaften reichen. Gegenstand der Arbeit war deshalb die Synthese von in der Literatur beschriebenen TMOB auf der Basis von Wolfram und Molybdän, die Bestimmung ihrer Kristallstruktur und die Untersuchung ihrer chemischen und physikalischen Eigenschaften. Aus den synthetisierten Verbindungen waren anhand einer elektrochemischen Vorcharakterisierung einige auszuwählen, um diese systematisch als Elektroden zu untersuchen. Insbesondere HxMoO3, Ba0,12WO3 und Li0,4Mo0,95W0,05O3 zeichneten sich durch gegenüber den anderen Oxidbronzen abweichende potentiometrische Charakteristika aus. Hinsichtlich der Einsetzbarkeit dieser Materialien für potentiometrische Elektroden wurden diese Verbin¬dungen noch nicht untersucht. Daher wurden diese Verbindungen eingehender erforscht. Die bezüglich ihrer potentiometrischen Eigen¬schaften bereits ausreichend untersuchte Verbindung Na0,9Mo6O17 diente dem Vergleich und wurde deshalb den selben Tests ausgesetzt. Dazu waren im Einzelnen potentiometrische Messungen in Abhängigkeit von der Konzentration der Alkaliionen und der Wasserstoffionen sowie von der Konzentration verschiedener Redoxspezies in wässrigen Medien durchzuführen. Unklar war bisher wie sich die Wechselwirkungen der gelösten Ionen mit den Molybdän- und Wolframionen im Festkörper vollziehen und warum die Elektroden Sensitivitäten für verschiedene Ionen aufweisen, die sich nicht aus der chemischen Zusammensetzung oder mit der Kristallstruktur der jeweiligen Oxidbronze erklären lassen. Zur Aufhellung dieses Problems waren unter anderem XPS-Untersuchungen an verschiedenen Oxidbronzen durchzuführen, aus denen man auf den Oxidationszustand des Wolframs und Molybdäns im Festkörper schließen kann.
3

Elektrochemische Untersuchungen an Elektroden aus Übergangsmetalloxidbronzen

Gabel, Juliane 20 December 2006 (has links)
Übergangsmetalloxidbronzen (TMOB) – Verbindungen mit der allgemeinen chemischen Summenformel AxByOz (A = Element der Gruppen 1, 2, 11, 12, 13, NH4+ oder Kombination; B = Übergangsmetall) – sind seit längerem als Material für ionensensitive Festkörperelektroden bekannt. Sie reagieren als Elektroden in elektrochemischen Messungen auf Ionen in wässrigen Elektrolyten in höchst unterschiedlicher Weise. Bis heute gibt es dazu nur wenige systematische vergleichende Untersuchungen, die von der Präparation der Bronzen, der Charakterisierung ihrer Eigenschaften bis zur Untersuchung ihrer Elektrodeneigenschaften reichen. Gegenstand der Arbeit war deshalb die Synthese von in der Literatur beschriebenen TMOB auf der Basis von Wolfram und Molybdän, die Bestimmung ihrer Kristallstruktur und die Untersuchung ihrer chemischen und physikalischen Eigenschaften. Aus den synthetisierten Verbindungen waren anhand einer elektrochemischen Vorcharakterisierung einige auszuwählen, um diese systematisch als Elektroden zu untersuchen. Insbesondere HxMoO3, Ba0,12WO3 und Li0,4Mo0,95W0,05O3 zeichneten sich durch gegenüber den anderen Oxidbronzen abweichende potentiometrische Charakteristika aus. Hinsichtlich der Einsetzbarkeit dieser Materialien für potentiometrische Elektroden wurden diese Verbin¬dungen noch nicht untersucht. Daher wurden diese Verbindungen eingehender erforscht. Die bezüglich ihrer potentiometrischen Eigen¬schaften bereits ausreichend untersuchte Verbindung Na0,9Mo6O17 diente dem Vergleich und wurde deshalb den selben Tests ausgesetzt. Dazu waren im Einzelnen potentiometrische Messungen in Abhängigkeit von der Konzentration der Alkaliionen und der Wasserstoffionen sowie von der Konzentration verschiedener Redoxspezies in wässrigen Medien durchzuführen. Unklar war bisher wie sich die Wechselwirkungen der gelösten Ionen mit den Molybdän- und Wolframionen im Festkörper vollziehen und warum die Elektroden Sensitivitäten für verschiedene Ionen aufweisen, die sich nicht aus der chemischen Zusammensetzung oder mit der Kristallstruktur der jeweiligen Oxidbronze erklären lassen. Zur Aufhellung dieses Problems waren unter anderem XPS-Untersuchungen an verschiedenen Oxidbronzen durchzuführen, aus denen man auf den Oxidationszustand des Wolframs und Molybdäns im Festkörper schließen kann.

Page generated in 0.7029 seconds