• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization of Fosfomycin-Resistant MurA from Borrelia burgdorferi, Fragment-based Inhibitor Design for AroA and DAHP Synthase

Jiang, Shan 10 1900 (has links)
<p>MurA catalyzes the first committed step of peptidoglycan biosynthesis and it is the target of the antibiotic fosfomycin. Due to a Cys-to-Asp substitution in the active site, MurAs from a number of pathogenic bacteria, including <em>Mycobacterium tuberculosis</em> and <em>Borrelia burgdorferi</em> (Lyme disease), are fosfomycin resistant. His-tagged <em>Borrelia burgdorferi</em> MurA (Bb_MurA) and its D116C mutant have been successfully expressed, purified and characterized. The <em>k</em><sub>cat</sub> value of wild-type Bb_MurA was 0.74 ± 0.01 s<sup>-1</sup>. The D116C mutant’s <em>k</em><sub>cat</sub> decreased by 25-fold and was fosfomycin sensitive. The pH profiles of <em>k</em><sub>cat</sub> for both Bb_MurA and its mutant were characterized. There was little difference in p<em>K</em><sub>a1</sub> values, but the p<em>K</em><sub>a2</sub> value shifted from 7.4 ± 0.2 in wild-type enzyme to a value >11 in the mutant. This demonstrated that the p<em>K</em><sub>a2</sub> of 7.4 was due to D116, and that it must be protonated for activity. Fosfomycin inactivation of Bb_MurA<sub>H6</sub>(D116C) was time-dependent and only proceeded in the presence of UDP-GlcNAc. The dissociation constant, <em>K</em><sub>i</sub>, was 5.7 ± 0.4 µM and rate of covalent modification, <em>k</em><sub>inact</sub>, was 0.021 ± 0.003 s<sup>-1</sup>.</p> <p>DAHP synthase catalyzes the first committed step in the shikimate pathway, and its catalysis has been proposed to proceed through two oxacarbenium ion intermediates. Pyruvate oxime, glyoxylate oxime and 4-imidazolecarboxylic acid have been evaluated as inhibitors of DAHP synthase. In the presence of glycerol 3-phosphate, the fitted <em>K</em><sub>i</sub> values of pyruvate oxime and glyoxylate oxime were 7.6 (± 0.9) × 10<sup>-5</sup> M and 7.4 (± 1.7) × 10<sup>-5</sup> M, respectively. 4-Imidazolecarboxylic acid’s inhibition was cooperative, and its binding was competitive with respect to PEP, and uncompetitive with respect to E4P. Its equilibrium dissociation constant was 3.0 (± 0.2) × 10<sup>-3</sup> M.</p> / Master of Science (MSc)
2

Protein crystallography of triosephosphate isomerases: functional and protein engineering studies

Alahuhta, M. (Markus) 06 May 2008 (has links)
Abstract The aim of this PhD-study was to better understand the structure-function relationship of triosephosphate isomerase (TIM) and to use this expertise to change its substrate specificity. TIM is an important enzyme of the glycolytic pathway which catalyzes the interconversion of D-glyceraldehyde phosphate (D-GAP) and dihydroxyacetone phosphate (DHAP). Two main subjects are discussed: the engineering of monomeric TIM to create new substrate specificity and the structure-function relationship studies of the catalytically important mobile loop6. The starting point for the protein engineering project was the monomeric ml8bTIM, with an extended binding pocket between loop7 and loop8. Rational protein engineering efforts have resulted in a new variant called A-TIM that can competently bind wild type transition state analogues. A-TIM was also able to bind citrate, a compound that the wild type TIM does not bind. This A-TIM citrate complex structure is a good starting point for future protein engineering efforts. Based on the assumption that it would be beneficial for the monomeric forms of TIM to have loop6 closed permanently to increase the population of competent active sites, two point mutation variants, A178L and P168A were generated and characterized. The A178L-mutation was made to favor the closed conformation of loop6 through steric clashes in the open conformation. The P168A variant was made to stabilize the closed conformation of loop6 by removing strain. The A178L mutation induced some features of the closed conformation, but did not result in a closed conformation in the absence of ligands. Our structural studies also show that the P168A mutation does not favor the closed conformation either. However, the structures of the unliganded and liganded P168A variant, together with other known TIM structures show that the substrate binding first induces closure of loop7. This conformational switch subsequently forces loop6 to adopt its closed conformation. The protein engineering project was successful, but the efforts to find variants with a permanently closed loop6 did not fully succeed. In the context of this thesis a monomeric variant of TIM, with new binding properties, was created. Nevertheless, A-TIM still competently binds the inhibitors and transition state analogues of wild type TIM. Also, when combined, results discussed in the context of this thesis indicate that in wild type TIM the closure of loop7 after ligand binding is the initial step in the series of conformational changes that lead to the formation of the competent active site. / Tiivistelmä Tämän väitöskirjatyön tarkoituksena oli oppia paremmin ymmärtämään trioosifosfaatti-isomeraasin (TIM) toimintamekanismeja sen rakenteen perusteella ja käyttää tätä tietämystä samaisen proteiinin muokkaamiseen uusiin tarkoituksiin. TIM on keskeinen entsyymi solun energian tuotannossa ja sen toiminta on välttämätöntä kaikille eliöille. Tämän vuoksi on tärkeää oppia ymmärtämään miten se saavuttaa tehokkaan reaktionopeutensa ja miksi se katalysoi vain D-glyseraldehydi-3-fosfaattia (D-GAP) ja dihydroksiasetonifosfaattia (DHAP). TIM:n toiminta mekanismien ymmärtämiseksi sen aminohapposekvenssiä muokattiin kahdesta kohtaa (P168A ja A178L) ja seuraukset todettiin mittaamalla tuotettujen proteiinien stabiilisuutta optisesti eri lämpötiloissa ja selvittämällä niiden kolmiulotteinen rakenne käyttäen röntgensädekristallografiaa. Mutaatioita tehtiin dimeeriseen villityypin TIM:in (wtTIM) ja jo aikaisemmin muokattuun monomeeriseen TIM:in (ml1TIM). Näiden mutaatioiden tarkoituksena oli suosia entsyymin aktiivista konformaatiota, jossa reaktion kannalta välttämätön vapaasti liikkuva peptidisilmukka numero 6 on suljetussa konformaatiossa. Monomeerisissä TIM:ssa peptidisilmukka numero 6:n ei ole välttämätöntä aueta. Tulokset mutaatiokokeista olivat osittain lupaavia. P168A-mutaatio lisäsi D-GAP:in sitoutumista, mutta rikkoi tärkeän mekanismin suljetussa, ligandia sitovassa, konformaatiossa. A178L-mutaatio aiheutti muutoksia avoimeen konformaatioon ja teki siitä suljettua konformaatiota muistuttavan jopa ilman ligandia, mutta samalla koko proteiini muuttui epävakaammaksi. Näistä kahdesta mutaatiosta A178L voisi olla hyödyllinen muokattujen TIM-versioiden ominaisuuksien parantamiseksi. Lisäksi yhdessä jo aikaisemmin julkaistujen yksityiskohtien kanssa nämä tulokset tekevät mahdolliseksi esittää tarkennusta siihen miten TIM toimii kun ligandi saapuu sen lähettyville. Tämän väitöskirjatyön yksi tavoite oli myös muokata edelleen monomeeristä TIM versiota (ml8bTIM), joka on suunniteltu siten, että se voi mahdollisesti sitoa uudenlaisia ligandeja. Tämä projekti vaati onnistuakseen 20 eri versiota ml8bTIM:n sekvenssistä ja noin 30 rakennetta. Uusia ligandeja sitova muoto (A-TIM) sitoi onnistuneesti sitraattia ja villityypin TIM:n inhibiittoreita. Erityisen lupaavaa oli, että A-TIM sitoi myös bromohydroksiasetonifosfaattia (BHAP), joka sitoutuu ainoastaan toimivaan aktiiviseen kohtaan. Nämä tulokset osoittavat, että A-TIM kykenee tarvittaessa katalysoimaan isomerisaatio reaktion uudenlaisille molekyyleille. Esimerkiksi katalysoimaan isomerisointireaktiota sokerianalogien tuotannossa.

Page generated in 0.4498 seconds