• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 7
  • 7
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Buckling and postbuckling of flat and curved laminated composite panels under thermomechanical loadings incorporating non-classical effects

Lin, Weiqing 26 October 2005 (has links)
Two structural models which can be used to predict the buckling, post buckling and vibration behavior of flat and curved composite panels under thermomechanical loadings are developed in this work. Both models are based on higher-order transverse shear deformation theories of shallow shells that include the effects of geometric nonlinearities and initial geometric imperfections. Within the first model (Model I), the kinematic continuity at the contact surfaces between the contiguous layers and the free shear traction condition on the outer bounding surfaces are satisfied, whereas in the second model (Model II), in addition to these conditions, the static interlaminae continuity requirement is also fulfilled. Based on the two models, results which cover a variety of problems concerning the postbuckling behaviors of flat and curved composite panels are obtained and displayed. These problems include: i) buckling and postbuckling behavior of flat and curved laminated structures subjected to mechanical and thermal loadings; ii)frequency-load/temperature interaction in laminated structures in both pre-buckling and post buckling range; iii) the influence of a linear/nonlinear elastic foundation on static and dynamic post buckling behavior of flat/curved laminated structures exposed to mechanical and temperature fields; iv) implication of edge constraints upon the temperature/load carrying capacity and frequencyload/ temperature interaction of flat/curved structures; v) elaboration of a number of methodologies enabling one to attenuate the intensity of the snap-through buckling and even to suppress it as well as of appropriate ways enabling one to enhance the load/temperature carrying capacity of structures. / Ph. D.
2

Further Investigation of a New Traction Stress Based Shear Strength Characterization Method with Test Data

Boppudi, Srimanth 16 May 2014 (has links)
In this thesis, a new traction stress based method for characterizing shear strength is investigated by carrying out a series of shear strength tests. The AWS method for the calculation of shear strength shows significant discrepancies between longitudinal and transverse specimens. The main purpose of this new traction based definition for shear strength is to demonstrate that there exists a single shear strength value regardless of specimen geometry and loading conditions. With this new approach a better correlation between shear strength values for transverse and longitudinal specimens is achieved. Special issues occur with the multi-pass welds in regards to the failure angle. The AWS equation does not account to different failure angles of the specimens, it only assumes 45o failure angle in all the cases, but the new approach takes into account the different failure angles. Finally with this method a quantitative weld sizing can be achieved for fillet welds.
3

Torsional Stiffness of Corrugated Paperboard

Guo, Zhiling 27 October 2016 (has links)
No description available.
4

Modelling of failure mechanisms for corrugated board.

Haidar, Mohamed January 2015 (has links)
The present work describes the construction of a semi-analytical model for prediction of buckling loads in simply supported corrugated paperboard panels. The model accounts for transverse shear, due to the weakness of the core in such plates compared to the facings. This was done utilizing energy relations and rst order transverse shear. The panel was homogenised using laminate theory. A detailed model using FEM was derived in order to validate the predictive capabilities of the analytical model. Experimental testing was performed to estimate the accuracy of both theoretical models, and assess the limitation of the analytical model. All modes of analysis showed good agreement for cubic boxes. Further investigation into expanding the scope of the analytical model was carried out and commented on.
5

Semi Analytical Study Of Stress And Deformation Analysis Of Anisotropic Shells Of Revolution Including First Order Transverse Shear Deformation

Oygur, Ozgur Sinan 01 September 2008 (has links) (PDF)
In this study, anisotropic shells of revolution subject to symmetric and unsymmetrical static loads are analysed. In derivation of governing equations to be used in the solution, first order transverse shear effects are included in the formulation. The governing equations can be listed as kinematic equations, constitutive equations, and equations of motion. The equations of motion are derived from Hamilton&rsquo / s principle, the constitutive equations are developed under the assumptions of the classical lamination theory and the kinematic equations are based on the Reissner-Naghdi linear shell theory. In the solution method, these governing equations are manipulated and written as a set called fundamental set of equations. In order to handle anisotropy and first order transverse shear deformations, the fundamental set of equations is transformed into 20 first order ordinary differential equations using finite exponential Fourier decomposition and then solved with multisegment method of integration, after reduction of the two-point boundary value problem to a series of initial value problems. The results are compared with finite element analysis results for a number of sample cases and good agreement is found. Case studies are performed for circular cylindrical shell and truncated spherical shell geometries. While reviewing the results, effects of temperature and pressure loads, both constant and variable throughout the shell, are discussed. Some drawbacks of the first order transverse shear deformation theory are exhibited.
6

Étude du comportement mécanique des matériaux composites par corrélation volumique : Application à l’analyse des effets du cisaillement transverse / Study of mechanical behavior of composite materials by digital volume correlation : Application to the transverse shear effects analysis

Brault, Romain 04 October 2013 (has links)
De nombreuses études ont été menées sur les matériaux composites, concernant le comportement mécanique à l’échelle macroscopique. D’autre part, le développement continu des techniques de détection et de mesures de champs permet d’aller plus loin dans l’analyse des structures complexes, dont les matériaux composites. Ainsi, la corrélation volumique (DVC) basée sur des acquisitions de la structure interne à différents états de déformation, permet la mesure du champ des déplacements dans le volume des échantillons. Le gauchissement des sections dû aux contraintes de cisaillement transverse est un phénomène propre aux structures anisotropes comme les structures composites. De nombreuses études traitent du développement des modèles analytiques pour la modélisation numérique et la détermination des déplacements avec le plus de précision possible. Ainsi, de nombreux modèles existent, certains très complexes, pour la prise en compte de ce phénomène dans l’étude des structures multicouches. L'objectifs de ce travail doctoral est d’utiliser les mesures de champs issues de la corrélation volumique couplée à la tomographie rayons X, pour visualiser le gauchissement des sections pour un cas de sollicitation de flexion trois points. Une méthode de mesure ainsi qu’un système de chargement in-situ spécifique sont développés dans ce travail de recherche. Les modèles analytiques existants sont évalués et comparés à partir de mesures expérimentales. Aussi, un nouveau modèle est également proposé à partir d'une identification numérique, basée sur les mesures de champs volumiques réalisées. Les résultats de ce travail de thèse permettront une meilleure compréhension du phénomène physique rencontrés lors de l’utilisation des matériaux composites et pourront envisager des pistes d’optimisation de leur conception et de leur mise en œuvre. / The complex mechanical behaviour of composite materials, due to internal heterogeneity and multi-layered composition impose deeper analysis. Several studies have already been conducted on the composite structures mechanical behavior at the macro level. On the other hand, the continuous development of detection techniques and field measurements can now go further in the analysis of complex structures, including composites. Thus, the digital volume correlation (DVC) based on the acquisition of the internal structure at different deformation states, allows the measurement of displacement fields through the thickness of the specimen. Warping sections due to transverse shear is a phenomenon linked to anisotropic structures, such as composite structures, which has been the subject of many studies to develop analytical models for the numerical modeling and the determination of displacements with the greatest possible precision. Many theories and models exist, some very complex, for the consideration of this phenomenon .. One goal of this doctoral work is to use measurements from the density correlation to determine whether these models the effects of transverse shear are physically consistent, and if their validity is good in the case of a kinematic measurement volume. A second objective of this thesis is to acquire know-how in the processing of information resulting from acquisitions by X-ray tomography In this sense, several studies are planned for the treatment and use of this information in an industrial context. The results of this work will provide a better understanding of physical phenomena encountered in the use of composite materials to generate optimization of their design and implementation paths.
7

Structural Characterization of Tetracene Films by Lateral Force Microscopy and Grazing-Incidence X-Ray Diffraction

Tersigni, Andrew 13 April 2012 (has links)
Organic semiconductors show promise to yield a novel class of bendable electronic devices, and much research efforts have focused on the optimization of these films for device performance. It is well known that the structure of organic films has a large influence over the electronic properties. In particular, the carrier mobility is often highly anisotropic, and domain boundaries have a detrimental effect on charge transport. Therefore the domain structure and lattice orientation are of particular interest. However, little is known about the domain structure of organic films, and techniques to study these properties have only begun to emerge in recent years. In this thesis, we apply two experimental techniques, Grazing-Incidence X-ray Diffraction (GIXD) and Lateral Force Microscopy (LFM), toward studying the lattice and domain structure of tetracene films grown on the silicon(001)-monohydride surface. We describe the necessary steps toward optimizing the sensitivity of these techniques to the domain structure. Results show that the crystalline tetracene films form a layered morphology in which the a-b plane lies parallel to the substrate surface. The film lattice structure is similar to bulk tetracene, and the lattice is confined to two orthogonal orientations, forming a partially-commensurate relationship with the substrate surface lattice along the film 'a' axis. LFM images reveal two types of polycrystalline domains. The first type ("major domains") are tens of microns in size, and are classified by their lattice orientation. They are subdivided into the second type ("sub-domains"), which range from 0.1 to 5um in size, and are argued to represent regions of uniform molecular tilt direction. The GIXD data show that the single-crystal domains which comprise these two larger domain types are anisotropic in size, being up to two times longer along the film 'b' axis than along 'a'. The single-crystal domains range from 0.05 to 0.2um in size, depending on lattice orientation and film thickness. The mathematical basis for these single-crystal domain size calculations is presented. The single-crystal domain sizes are thickness-dependent, and are two orders of magnitude smaller than a typical surface island observed in atomic-force microscopy (AFM) topographs. Substrate steps can also significantly influence the film structure by inducing boundaries in the single-crystal domains and sub-domains, but not in the major domains. This detailed knowledge of the domain structure of organic thin-films may assist in our understanding of the factors which affect charge transport in thin films, and may help to direct research efforts in optimizing the film structure for device performance. / Natural Sciences and Engineering Research Council (NSERC), Canadian Foundation for Innovation (CFI), Ontario Innovation Trust (OIT).

Page generated in 0.1705 seconds