• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 1
  • 1
  • Tagged with
  • 10
  • 10
  • 10
  • 8
  • 8
  • 8
  • 7
  • 7
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The effect of CuInSe2 thin film property of ZnSeTe window layer

Ho, Hsieh-Chia 27 July 2002 (has links)
Abract This paper concems studies of CIS solar cell based on ZnSe an ZnSeTe window layer. ZnSe an ZnSeTe films are grown by Molecular Beam Deposition (MBD).This research is important for several reasons : (1)Development of non-cadmium buffer layer may be essential for CIS solar cells to be accepted in the marketplace ; (2)Development of direct ZnO/CIS cells could lead to a simplified cell (3)knowledge gained in investigations of ZnO and ZnSeTe buffer layer may help us understand the unique role CdS plays in CdS/CIS solar cell .
2

Herstellung und Untersuchung zirkoniumbasierter Oxide als Dielektrika zur Anwendung in dynamischen Halbleiterspeichern

Grube, Matthias 02 September 2013 (has links)
In dieser Arbeit sind Dielektrika mit hoher relativer Permittivität untersucht worden, welche eine Anwendung in dynamischen Halbleiter-Speicherzellen (DRAM) zum Ziel haben. Sie unterstützen das Weiterführen der fortschreitenden Miniaturisierung der Speicherzellen bzw. der Erhöhung der Speicherdichten und dienen als Alternative zu den bisherigen Standardmaterialien SiO2 und Si3N4. Als Herstellungsmethoden für mehrkomponentige Oxide wurden zum einen die Molekularstrahl-Deposition und zum anderen die Ko-Sputterdeposition gewählt, da sie eine sehr große Flexibilität bei der Wahl der abscheidbaren Elemente und Oxide bieten sowie eine hohe Ratenstabilität und Reinheit versprechen. Hierfür wurden Prozesse zur simultanen Abscheidung dünner Schichten aus mehreren Quellen entwickelt und optimiert. Als neuartige Dielektrika wurden ZrO2 und SrZrO3 hergestellt und untersucht. Hierbei wurden besonders die dielektrischen und kristallographischen Eigenschaften in Abhängigkeit von der Stöchiometrie umfangreich analysiert. Die maximale erreichte Dielektrizitäszahl des ZrO2 betrug ca. 30 und die des SrZrO3 ca. 31. Es wurde dargelegt, dass die Dielektrizitätszahl des ZrO2 unter bestimmten Umständen von der Schichtdicke im Bereich von 5 bis 50 nm abhängig ist. Dies konnte durch die Beimischung von Sr erfolgreich stabilisiert werden. Die für DRAM-Anwendungen zum Teil zu hohen Leckstromdichten konnten durch die Entwicklung eines neuen Ausheilverfahrens deutlich verbessert werden. Aufgrund der hohen Dielektrizitätszahl in Verbindung mit gesenkten Leckströmen konnte für ZrO2 eine minimale kapazitätsäquivalente Dicke von CET = 1,2 nm und für SrZrO3 eine CET = 1,4 nm erreicht werden, welche der DRAM-Grenze für Leckstromdichten von J = 100 nA/cm² genügen. Diese Werte sind deutlich geringer als die dünnsten, theoretisch möglichen Schichten des klassischen SiO2 und Si3N4, wodurch sowohl ZrO2 als auch SrZrO3 ihr Potential, als Alternative für Speicheranwendungen zu dienen, unterstreichen. / In this work, dielectrics with a high relative permittivity were investigated, which are intended for the application in dynamic random access memory cells (DRAM). Their successful implementation ensures the continuation of the ongoing scaling of memory devices, thus increasing the storage density. They serve as alternative for the standard materials SiO2 and Si3N4. In order to to grow multi-component oxides, molecular beam deposition as well as co-sputter deposition were chosen, given their high flexibility to evaporate various elements and oxides. Additionally, both hold their promise of a good control of the growth rate and high purity. Therefore processes were developed and optimized for growing thin films by using multiple sources simultaneously. The alternative dielectrics ZrO2 and SrZrO3 were fabricated and analysed. Especially, the dependency of the dielectric and crystallographic properties on the stoichiometry were evaluated comprehensively. The highest achieved relative permittivity for ZrO2 and SrZrO3 were approx. 30 and 31, respectively. Under specific and controllable circumstances, the relative permittivity of ZrO2 was found to depend on the film thickness in the range of 5 to 50 nm. However, the admixture of Sr stabilises the relative permittivity. In some cases, the leakage current densities of ZrO2 and SrZrO3 films were too high for DRAM applications. It was possible to decrease those currents drastically by developing a new healing process. The high permittivity in addition with the improved leakage current densities led in the case of ZrO2 to a minimum capacitance equivalent thickness of CET = 1.2 nm and in the case of SrZrO3 to a CET = 1.4 nm, which fulfill the DRAM leakage current density limit of J = 100 nA/cm². Those values are much lower than the thinnest theoretically possible films of the conventional SiO2 or Si3N4. Therefore, ZrO2 and SrZrO3 accentuate their potential for memory applications.
3

Self-assembled molecular arrays of distinct types of substituted metal phthalocyanines on crystalline metal substrates

Toader, Marius 29 November 2012 (has links) (PDF)
Trotz einer Vielzahl von Forschungsarbeiten auf dem Gebiet der Phthalocyanin-basierten organischen Verbindungen fehlt nach wie vor ein umfassendes Verständnis des Zusammenspiels zwischen strukturellen und elektronischen Eigenschaften, die sich bei der Abscheidung dieser Stoffe auf anorganische kristallinen Substraten ausbilden. Vor diesem Hintergrund wurden für die vorliegende Arbeit vier metallbasierte Phthalocyanine ausgewählt und mittels organischer Molekularstrahl-Abscheidung (OMBD) im Ultrahochvakuum (UHV) auf Ag (111) Einkristalle adsorbiert. Für die anschließende eingehende Untersuchung dieser Proben wurden insbesondere Rastertunnelmikroskopie (STM) und -spektroskopie (STS) angewandt. Ergänzend kamen Ultraviolett- und Röntgen-Photoelektronenspektroskopie (UPS und XPS) zum Einsatz, wodurch komplementäre Informationen gewonnen wurden. Die aus diesen Untersuchungen resultierenden Ergebnisse liefern einen wesentlichen Beitrag zum oben genannten Forschungsgebiet. Die in dieser Arbeit untersuchten Metall-Phthalocyanine (MePc) wurden so ausgewählt, dass eine möglichst große Vielfalt an geometrischen und elektronischen Eigenschaften abgedeckt wurde. Planare cobaltbasierte Phthalocyanin-Moleküle wurden in zwei Konfigurationen untersucht: einerseits das protonierte CoPc, das sich als organischer p-Halbleiter verhält, und andererseits das vollständig fluorinierte F16CoPc, das n-Halbleitereigenschaften besitzt. Bei beiden Systemen zeigte sich an der Position des Cobaltions eine Kopplung zwischen den Molkülorbitalen des Adsorbats und den Elektronenzuständen des Substrates. Das nichtplanare Zinn-Phthalocyanin ist von besonderem Interesse aufgrund seiner beiden möglichen Adsorptionskonformationen up und down, bei denen sich das Sn-Ion oberhalb beziehungsweise unterhalb des Phthalocyaninliganden befindet. Damit stellt dieses System einen möglichen Kandidaten für Anwendungen als molekularer Schalter oder als Speichereinheit dar. In der vorliegenden Studie werden lokalisierte Schaltvorgänge einzelner Moleküle zusammen mit der Möglichkeit einer kontrollierten molekularen Nanostrukturierung gezeigt. Lutetium (III) bisphthalocyanin wurde ausgewählt als Vertreter einer neuen Gruppe von MePc, die eine Sandwichstruktur ausbilden, bei der zwei π-konjugierte Phthalocyaninliganden über ein Seltenerd-Ion miteinander verbunden sind. Die Untersuchung dieses Systems liefert wichtige neue Erkenntnisse, wie zum Beispiel ein umfassendes Verständnis der Vorgänge bei der Selbstassemblierung innerhalb der ersten und zweiten organischen Monolage. Zudem wurde bei der Charakterisierung des Tunneltransports durch einzelne Moleküle mittels STS ein negativer differentieller Widerstand (NDR) gefunden, der von der Anzahl molekularer Lagen abhängt.
4

Self-assembled molecular arrays of distinct types of substituted metal phthalocyanines on crystalline metal substrates: A Nanoscale Study

Toader, Marius 30 October 2012 (has links)
Trotz einer Vielzahl von Forschungsarbeiten auf dem Gebiet der Phthalocyanin-basierten organischen Verbindungen fehlt nach wie vor ein umfassendes Verständnis des Zusammenspiels zwischen strukturellen und elektronischen Eigenschaften, die sich bei der Abscheidung dieser Stoffe auf anorganische kristallinen Substraten ausbilden. Vor diesem Hintergrund wurden für die vorliegende Arbeit vier metallbasierte Phthalocyanine ausgewählt und mittels organischer Molekularstrahl-Abscheidung (OMBD) im Ultrahochvakuum (UHV) auf Ag (111) Einkristalle adsorbiert. Für die anschließende eingehende Untersuchung dieser Proben wurden insbesondere Rastertunnelmikroskopie (STM) und -spektroskopie (STS) angewandt. Ergänzend kamen Ultraviolett- und Röntgen-Photoelektronenspektroskopie (UPS und XPS) zum Einsatz, wodurch komplementäre Informationen gewonnen wurden. Die aus diesen Untersuchungen resultierenden Ergebnisse liefern einen wesentlichen Beitrag zum oben genannten Forschungsgebiet. Die in dieser Arbeit untersuchten Metall-Phthalocyanine (MePc) wurden so ausgewählt, dass eine möglichst große Vielfalt an geometrischen und elektronischen Eigenschaften abgedeckt wurde. Planare cobaltbasierte Phthalocyanin-Moleküle wurden in zwei Konfigurationen untersucht: einerseits das protonierte CoPc, das sich als organischer p-Halbleiter verhält, und andererseits das vollständig fluorinierte F16CoPc, das n-Halbleitereigenschaften besitzt. Bei beiden Systemen zeigte sich an der Position des Cobaltions eine Kopplung zwischen den Molkülorbitalen des Adsorbats und den Elektronenzuständen des Substrates. Das nichtplanare Zinn-Phthalocyanin ist von besonderem Interesse aufgrund seiner beiden möglichen Adsorptionskonformationen up und down, bei denen sich das Sn-Ion oberhalb beziehungsweise unterhalb des Phthalocyaninliganden befindet. Damit stellt dieses System einen möglichen Kandidaten für Anwendungen als molekularer Schalter oder als Speichereinheit dar. In der vorliegenden Studie werden lokalisierte Schaltvorgänge einzelner Moleküle zusammen mit der Möglichkeit einer kontrollierten molekularen Nanostrukturierung gezeigt. Lutetium (III) bisphthalocyanin wurde ausgewählt als Vertreter einer neuen Gruppe von MePc, die eine Sandwichstruktur ausbilden, bei der zwei π-konjugierte Phthalocyaninliganden über ein Seltenerd-Ion miteinander verbunden sind. Die Untersuchung dieses Systems liefert wichtige neue Erkenntnisse, wie zum Beispiel ein umfassendes Verständnis der Vorgänge bei der Selbstassemblierung innerhalb der ersten und zweiten organischen Monolage. Zudem wurde bei der Charakterisierung des Tunneltransports durch einzelne Moleküle mittels STS ein negativer differentieller Widerstand (NDR) gefunden, der von der Anzahl molekularer Lagen abhängt.
5

Co-deposited films of rod-like conjugated molecules

Vogel, Jörn-Oliver 20 August 2009 (has links)
In dieser Arbeit wird die Phasenseparation und Mischung zwischen konjugierten Stäb-chenmolekülen in dünnen Filmen untersucht. Hauptaugenmerk liegt darauf zu ergrün-den welche molekularen Eigenschaften zu Mischung und/ oder Phasenseparation füh-ren. Mit den 5 Molekülen Pentacen (PEN), Quaterthiophen (4T), Sexithiophen (6T), p-Sexiphenylen (6P), alpha,omega-Dihexylsexithiophen (DH6T) werden Materialpaare zusammen gestellt, die sich in den Parametern „optische und elektrische Eigenschaf-ten“, „Länge des konjugierten Kerns“ und Alkylkettensubstitution unterscheiden. Alle Schichten werden mittels organischer Molekularstrahlabscheidung auf die Substrate Siliziumoxid und Mylar, einer PET Folie, simultan von zwei Quellen aufgedampft. Das Mischungsverhältnis wird mittels der individuellen Aufdampfraten eingestellt und eine Gesamtrate von 0.5 nm/min eingehalten. Es wird Phasenseparation für Materialpaare mit ungleicher konjugierter Kernlänge, z.B. [4T/6T], beobachtet. Erstaunlicherweise führt die Co-Verdampfung von Molekülpaaren mit ähnlicher konjugierter Kernlänge [4T/PEN] und [6T/6P] zu wohlgeordneten Fil-men, in denen die Moleküle in gemischten Lagen parallel zur Substratoberfläche auf-wachsen und die Längsachse der Moleküle fast senkrecht zur Substratoberfläche orien-tiert ist. Molekülpaare mit ähnlicher konjugierter Kernlänge und Alkylsubstitution [6T/DH6T] und [6P/DH6T] zeigten ebenfalls geordneten Schichten, wobei als Besonderheit eine lineare Abhängigkeit des Lagenabstandes vom DH6T-Gehalt zu beobachten ist. Dies wird mit einer Phasenseparation in eine aromatische und eine alkyl Domäne erklärt. Mit abnehmendem DH6T-Gehalt im Film ist die Alkyldomäne weniger dicht gepackt, was auf Grund der Flexibilität der Alkylketten zu einer Abnahme des gesamten Lagenab-standes führt. Die besonders geringe Oberflächenrauhigkeit und die miteinander verbundenen Inseln der [DH6T/6T] Filme prädestinieren sie zur Verwendung in Feldeffekttransistoren. Es wird gezeigt, dass es möglich ist, die Ladungsträgerdichte im Kanal durch Änderung des Verhältnisses zwischen DH6T und 6T so zu verändern, dass der Transistor im Verar-mungs- oder Anreicherungsregime betrieben werden kann. Dabei bleibt die Ladungsträ-germobilität auf gleich bleibend hohem Niveau. Dies entspricht dem Dotieren eines anorganischen Halbleiters. / This thesis is centered on studies of phase separation and mixing in co-deposited thin films of rod-like conjugated molecules. The main focus is to determine which molecular properties lead to phase separation and/or mixing of two materials. To address this question I used five materials, of importance in the context of “organic electronics”: pentacene (PEN), quaterthiophene (4T), sexithiophene (6T), p-sexiphenylene (6P), alpha,omega-dihexylsexithiophene (DH6T). With these it was possible to form material pairs which differ in the parameters: energy levels, length of the conjugated core, and alkyl-end-chain-substitution. All films were deposited by organic molecular beam deposition onto the chemically inert substrates silicon oxide and Mylar, a polyethylene terephthalate (PET) foil. The material pairs were deposited simultaneously from two thermal sublima-tion sources. The mixing ratio was controlled by the individual deposition rates, which were measured online by a microbalance. The total deposition rate was 0.5 nm/min, and the film thicknesses ranged from 4 nm to 40 nm. Phase separation is observed for material pairs with dissimilar conjugated core sizes, i.e. [4T/6T]. Noteworthy, the co-deposition of material pairs with similarly sized conju-gated cores [4T/PEN] and [6T/6P] lead to well ordered layered structures. The mole-cules show mixing within layers on a molecular scale and the long molecular axis is ori-ented almost perpendicular to the substrate surface. Material pairs with similarly sized conjugated core and alkyl-end-chain-substitution [6T/DH6T] and [6P/DH6T] show also growth in mixed layered structures. An especially appealing fact is that the interlayer distance increases proportional to the DH6T content in the film. This can be explained with a phase separation into an aromatic and an alkyl domain vertically to the substrate surface. A decrease of the DH6T content in the film leads to a less dense packing in the alkyl domain. This leads, due to the flexibility of the alkyl chains, to a decrease of the overall interlayer distance. The low surface corrugation and the interconnected islands render the material pair [6T/DH6T] well suitable for the use as active layer in organic field effect transistors. It is shown that it is possible to tune the charge carrier density in the channel by changing the ratio between 6T and DH6T. This effect enables switching the transistor from en-hancement to depletion mode, while maintaining a high charge carrier mobility. This is comparable to p-type doping of inorganic semiconductors.
6

Electrical and Morphological Characterisation of Organic Field-Effect Transistors

Toader, Iulia Genoveva 30 November 2012 (has links) (PDF)
In dieser Arbeit wurden unterschiedliche Moleküle aus der Klasse der Phthalocyanine (Pc) und Pentacen-Materialien als aktive Schichten in organischen Feldeffekttransistoren (OFETs) mittels organischer Molekularstrahldeposition (OMBD) unter Hochvakuumbedingungen aufgedampft. Die elektrische Charakterisierung von Top-Kontakt (TC) und Bottom-Kontakt (BC) OFET-Konfigurationen, die Auskunft über die Ladungsträgermobilität, die Schwellspannung und das Ein/Aus-Verhältnis gibt, wurde sowohl unter Hochvakuum- als auch unter Umgebungsbedingungen an Luft durchgeführt. Für beide OFET-Konfigurationen wurde Gold für die Source- und Drain-Elektroden genutzt. Aussagen über die Morphologie der untersuchten organischen Schichten, die auf Siliziumsubstraten mit einem 100 nm dicken Siliziumdioxyd (SiO2) Gate-Dielektrikum abgeschieden wurden, wurden mittels Rasterelektronenmikroskopie (SEM) und Rasterkraftmikroskopie (AFM) erhalten. Im Vergleich mit den TC OFETs wurde im Bereich des aktiven Kanals in den BC OFETs die Bildung einer höheren Anzahl von Körnern und Korngrenzen gefunden, welche zur Degradation dieser Bauelemente speziell bei Atmosphärenexposition beiträgt. Es wurden die nachfolgenden fünf Moleküle aus der Klasse der Pc untersucht: Kupferphthalocyanin (CuPc), Fluoriertes Kupferphthalocyanin (F16CuPc), Kobaltphthalocyanin (CoPc), Titanylphthalocyanin (TiOPc), und Lutetium-bis-Phthalocyanin (LuPc2). Diese Moleküle wurden mit dem Ziel ausgewählt, die Performance der OFETs unter vergleichbaren Präparationsbedingungen zu testen, wenn das zentrale Metallatom, die Halbleitereigenschaften oder die molekulare Geometrie geändert werden. Durch die Fluorierung (F16CuPc) wurde eine Änderung im Leitungsverhalten von CuPc von p-Typ zum n-Typ erreicht und in der elektrischen Charakteristik der OFETs nachgewiesen. Diese Resultate wurden ebenfalls mittels Kelvin-Sonden-Kraftmikroskopie (KPFM) erhalten. Der Einfluss der Molekülgeometrie auf die Performance der Bauelemente wurde durch die Änderung der Gestalt der Moleküle von planar (CuPc, F16CuPc, CoPc) zu nicht planaren Einfach- (TiOPc) und nicht planaren Doppeldeckermolekülen (LuPc2) untersucht. Eine höhere OFET-Performance wurde erreicht, wenn planare Pc-Materialien für die Bildung der aktiven Schicht verwendet wurden. Das kann teilweise auf die Morphologie der Pc-Schichten zurückgeführt werden. AFM-Aufnahmen zeigen, dass im Vergleich mit nicht planaren Molekülen größere Körner und deshalb eine geringere Anzahl von Korngrenzen gebildet werden, wenn planare Pc-Moleküle verwendet werden. Für den Fall von TC CuPc OFETs wurde gezeigt, dass die Performance der Bauelemente verbessert werden kann, wenn das Gate-Dielektrikum mit einer selbstorganisierten Monoschicht von n-Octadecyltrichlorosilan modifiziert wird oder wenn das Substrat während der Aufdampfung der CuPc-Schicht auf einer höheren Temperatur gehalten wird. Für die Klasse der Pentacen-Materialien wurde ein Vergleich zwischen der Performance von BC OFETs, die die kürzlich synthetisierten fluorierten n-Typ Pentacenquinon-Moleküle nutzen, und denen, die die p-Typ Pentacen-Moleküle nutzen, präsentiert. Das große Erfordernis hochreine Materialien zu verwenden, um eine Degradation der OFETs zu vermeiden, wurde durch Durchführung von Mehrfachmessungen an den OFET-Bauelementen bestätigt. Aus diesen Experimenten lassen sich Informationen bzgl. der Störstellen an der Grenzfläche organische Schicht/SiO2 ableiten. Weiterhin wurde für einige der untersuchten Moleküle die Performance von BC OFETs unter dem Einfluss von unterschiedlichen Gasen gezeigt.
7

Structural Characterization of Tetracene Films by Lateral Force Microscopy and Grazing-Incidence X-Ray Diffraction

Tersigni, Andrew 13 April 2012 (has links)
Organic semiconductors show promise to yield a novel class of bendable electronic devices, and much research efforts have focused on the optimization of these films for device performance. It is well known that the structure of organic films has a large influence over the electronic properties. In particular, the carrier mobility is often highly anisotropic, and domain boundaries have a detrimental effect on charge transport. Therefore the domain structure and lattice orientation are of particular interest. However, little is known about the domain structure of organic films, and techniques to study these properties have only begun to emerge in recent years. In this thesis, we apply two experimental techniques, Grazing-Incidence X-ray Diffraction (GIXD) and Lateral Force Microscopy (LFM), toward studying the lattice and domain structure of tetracene films grown on the silicon(001)-monohydride surface. We describe the necessary steps toward optimizing the sensitivity of these techniques to the domain structure. Results show that the crystalline tetracene films form a layered morphology in which the a-b plane lies parallel to the substrate surface. The film lattice structure is similar to bulk tetracene, and the lattice is confined to two orthogonal orientations, forming a partially-commensurate relationship with the substrate surface lattice along the film 'a' axis. LFM images reveal two types of polycrystalline domains. The first type ("major domains") are tens of microns in size, and are classified by their lattice orientation. They are subdivided into the second type ("sub-domains"), which range from 0.1 to 5um in size, and are argued to represent regions of uniform molecular tilt direction. The GIXD data show that the single-crystal domains which comprise these two larger domain types are anisotropic in size, being up to two times longer along the film 'b' axis than along 'a'. The single-crystal domains range from 0.05 to 0.2um in size, depending on lattice orientation and film thickness. The mathematical basis for these single-crystal domain size calculations is presented. The single-crystal domain sizes are thickness-dependent, and are two orders of magnitude smaller than a typical surface island observed in atomic-force microscopy (AFM) topographs. Substrate steps can also significantly influence the film structure by inducing boundaries in the single-crystal domains and sub-domains, but not in the major domains. This detailed knowledge of the domain structure of organic thin-films may assist in our understanding of the factors which affect charge transport in thin films, and may help to direct research efforts in optimizing the film structure for device performance. / Natural Sciences and Engineering Research Council (NSERC), Canadian Foundation for Innovation (CFI), Ontario Innovation Trust (OIT).
8

Electrical and Morphological Characterisation of Organic Field-Effect Transistors

Toader, Iulia Genoveva 30 October 2012 (has links)
In dieser Arbeit wurden unterschiedliche Moleküle aus der Klasse der Phthalocyanine (Pc) und Pentacen-Materialien als aktive Schichten in organischen Feldeffekttransistoren (OFETs) mittels organischer Molekularstrahldeposition (OMBD) unter Hochvakuumbedingungen aufgedampft. Die elektrische Charakterisierung von Top-Kontakt (TC) und Bottom-Kontakt (BC) OFET-Konfigurationen, die Auskunft über die Ladungsträgermobilität, die Schwellspannung und das Ein/Aus-Verhältnis gibt, wurde sowohl unter Hochvakuum- als auch unter Umgebungsbedingungen an Luft durchgeführt. Für beide OFET-Konfigurationen wurde Gold für die Source- und Drain-Elektroden genutzt. Aussagen über die Morphologie der untersuchten organischen Schichten, die auf Siliziumsubstraten mit einem 100 nm dicken Siliziumdioxyd (SiO2) Gate-Dielektrikum abgeschieden wurden, wurden mittels Rasterelektronenmikroskopie (SEM) und Rasterkraftmikroskopie (AFM) erhalten. Im Vergleich mit den TC OFETs wurde im Bereich des aktiven Kanals in den BC OFETs die Bildung einer höheren Anzahl von Körnern und Korngrenzen gefunden, welche zur Degradation dieser Bauelemente speziell bei Atmosphärenexposition beiträgt. Es wurden die nachfolgenden fünf Moleküle aus der Klasse der Pc untersucht: Kupferphthalocyanin (CuPc), Fluoriertes Kupferphthalocyanin (F16CuPc), Kobaltphthalocyanin (CoPc), Titanylphthalocyanin (TiOPc), und Lutetium-bis-Phthalocyanin (LuPc2). Diese Moleküle wurden mit dem Ziel ausgewählt, die Performance der OFETs unter vergleichbaren Präparationsbedingungen zu testen, wenn das zentrale Metallatom, die Halbleitereigenschaften oder die molekulare Geometrie geändert werden. Durch die Fluorierung (F16CuPc) wurde eine Änderung im Leitungsverhalten von CuPc von p-Typ zum n-Typ erreicht und in der elektrischen Charakteristik der OFETs nachgewiesen. Diese Resultate wurden ebenfalls mittels Kelvin-Sonden-Kraftmikroskopie (KPFM) erhalten. Der Einfluss der Molekülgeometrie auf die Performance der Bauelemente wurde durch die Änderung der Gestalt der Moleküle von planar (CuPc, F16CuPc, CoPc) zu nicht planaren Einfach- (TiOPc) und nicht planaren Doppeldeckermolekülen (LuPc2) untersucht. Eine höhere OFET-Performance wurde erreicht, wenn planare Pc-Materialien für die Bildung der aktiven Schicht verwendet wurden. Das kann teilweise auf die Morphologie der Pc-Schichten zurückgeführt werden. AFM-Aufnahmen zeigen, dass im Vergleich mit nicht planaren Molekülen größere Körner und deshalb eine geringere Anzahl von Korngrenzen gebildet werden, wenn planare Pc-Moleküle verwendet werden. Für den Fall von TC CuPc OFETs wurde gezeigt, dass die Performance der Bauelemente verbessert werden kann, wenn das Gate-Dielektrikum mit einer selbstorganisierten Monoschicht von n-Octadecyltrichlorosilan modifiziert wird oder wenn das Substrat während der Aufdampfung der CuPc-Schicht auf einer höheren Temperatur gehalten wird. Für die Klasse der Pentacen-Materialien wurde ein Vergleich zwischen der Performance von BC OFETs, die die kürzlich synthetisierten fluorierten n-Typ Pentacenquinon-Moleküle nutzen, und denen, die die p-Typ Pentacen-Moleküle nutzen, präsentiert. Das große Erfordernis hochreine Materialien zu verwenden, um eine Degradation der OFETs zu vermeiden, wurde durch Durchführung von Mehrfachmessungen an den OFET-Bauelementen bestätigt. Aus diesen Experimenten lassen sich Informationen bzgl. der Störstellen an der Grenzfläche organische Schicht/SiO2 ableiten. Weiterhin wurde für einige der untersuchten Moleküle die Performance von BC OFETs unter dem Einfluss von unterschiedlichen Gasen gezeigt.
9

Tailoring the Electronic and Optical Properties of Molecular Thin Films by Reducing and Oxidising Agents

Haidu, Francisc 13 January 2015 (has links) (PDF)
Heutzutage wächst die Nachfrage nach neuartigen Geräten, die teilweise (hybrid) oder völlig aus organischen halbleitenden Materialien hergestellt sind. Der Grund dafür sind die geringen Herstellungskosten sowie die hohe Flexibilität im Moleküldesign und damit einstellbare optische, elektronische und Spintronik-Eigenschaften. Bisher sind mit großem Erfolg organische Leuchtdioden (OLED), organische Solarzellen und gedruckte organische Elektronik-Bauelemente hergestellt worden. Auf Grund ihrer langen Spin-Lebensdauer sind Moleküle auch für Spintronik-Anwendungen sehr geeignet. In dieser Arbeit wurden die elektronischen und optischen Eigenschaften von vier ausgewählten Molekülen analysiert. Davon wurden Kupfer- und Mangan-Phthalocyanin (CuPc und MnPc) für die Untersuchung der Anordnung des Energieniveaus an der Metall-Organischen Halbleitern (M-O) Grenzfläche verwendet. Außerdem werden die andere zwei Moleküle tris(8-hydroxy-quinolinato) Aluminium(III) (Alq3) und N,N’-diphenyl-N,N’-bis(1-naphthyl)-1,1’-biphenyl-4,4’-diamine (α-NPD) häufig in OLED-Strukturen als Elektron- beziehungsweise Loch-Leiter verwendet. Die Proben sind mittels organischer Molekularstrahl-Abscheidung (OMBD) auf Co (oder Au) Folien beziehungsweise auf einseitig poliertem Si(111) Einkristall hergestellt worden. Im ersten Teil der Arbeit wurde die Entwicklung der Grenzfläche zwischen CuPc und Co (oder Au) Substrat mittels Valenzband- und Inverser Photoelektronen-spektroskopie (VB-PES und IPES) analysiert und herausgefunden, dass ein „Öffnung“ der Bandlücke mit dem Wachstum der Molekularschicht erfolgt. Ähnliches findet bei die MnPc/Co-Grenzfläche statt. Diese Erkenntnisse sind sehr wichtig für die Entwicklung von zukünftigen leistungsfähigen Spintronik Geräten. Der zweite Teil fokussiert auf die Änderungen der elektronischen Eigenschaften von MnPc und Alq3 während der Oxidation (O2-Aussetzung) beziehungsweise Reduktion (Kalium-Abscheidung). Abgesehen von den VB-PES und IPES Messungen, bieten die Röntgenphotoelektronenspektroskopie (XPS) und die Röntgen-Nahkante- Absorptions-Spektroskopie (NEXAFS) wichtige Informationen w. z. B. die Menge von K in der Molekülschicht und den Spin-Zustand im undotierten und im dotierten MnPc. Der dritte Teil beschäftigt sich mit den optischen Eigenschaften von MnPc, Alq3 und α-NPD als Reinmaterialien sowie mit K-dotierten Molekülen, in situ verfolgt mittels spektroskopischer Ellipsometrie (SE). Vom SE-Spektrum wurde der Imaginärteil der dielektrischen Funktion abgeleitet. Während α-NPD fast keine Änderung im Absorptionsspektrum nach der Dotierung zeigt, zeigt Alq3 dagegen ein Wandel zu einer dotierten Phase mit kleine Änderungen im Spektrum. Dabei hat MnPc drei stabile dotierte Phasen mit großen spektralen Änderungen. Außerdem zeigt die Oxidation von MnPc umgekehrt Eigenschaften zur dotierten Phase. Alle diese Messungen sind einzigartig und sehr wichtig für die Entwicklung von OLED und Spintronik Geräten.
10

Tailoring the Electronic and Optical Properties of Molecular Thin Films by Reducing and Oxidising Agents

Haidu, Francisc 19 December 2014 (has links)
Heutzutage wächst die Nachfrage nach neuartigen Geräten, die teilweise (hybrid) oder völlig aus organischen halbleitenden Materialien hergestellt sind. Der Grund dafür sind die geringen Herstellungskosten sowie die hohe Flexibilität im Moleküldesign und damit einstellbare optische, elektronische und Spintronik-Eigenschaften. Bisher sind mit großem Erfolg organische Leuchtdioden (OLED), organische Solarzellen und gedruckte organische Elektronik-Bauelemente hergestellt worden. Auf Grund ihrer langen Spin-Lebensdauer sind Moleküle auch für Spintronik-Anwendungen sehr geeignet. In dieser Arbeit wurden die elektronischen und optischen Eigenschaften von vier ausgewählten Molekülen analysiert. Davon wurden Kupfer- und Mangan-Phthalocyanin (CuPc und MnPc) für die Untersuchung der Anordnung des Energieniveaus an der Metall-Organischen Halbleitern (M-O) Grenzfläche verwendet. Außerdem werden die andere zwei Moleküle tris(8-hydroxy-quinolinato) Aluminium(III) (Alq3) und N,N’-diphenyl-N,N’-bis(1-naphthyl)-1,1’-biphenyl-4,4’-diamine (α-NPD) häufig in OLED-Strukturen als Elektron- beziehungsweise Loch-Leiter verwendet. Die Proben sind mittels organischer Molekularstrahl-Abscheidung (OMBD) auf Co (oder Au) Folien beziehungsweise auf einseitig poliertem Si(111) Einkristall hergestellt worden. Im ersten Teil der Arbeit wurde die Entwicklung der Grenzfläche zwischen CuPc und Co (oder Au) Substrat mittels Valenzband- und Inverser Photoelektronen-spektroskopie (VB-PES und IPES) analysiert und herausgefunden, dass ein „Öffnung“ der Bandlücke mit dem Wachstum der Molekularschicht erfolgt. Ähnliches findet bei die MnPc/Co-Grenzfläche statt. Diese Erkenntnisse sind sehr wichtig für die Entwicklung von zukünftigen leistungsfähigen Spintronik Geräten. Der zweite Teil fokussiert auf die Änderungen der elektronischen Eigenschaften von MnPc und Alq3 während der Oxidation (O2-Aussetzung) beziehungsweise Reduktion (Kalium-Abscheidung). Abgesehen von den VB-PES und IPES Messungen, bieten die Röntgenphotoelektronenspektroskopie (XPS) und die Röntgen-Nahkante- Absorptions-Spektroskopie (NEXAFS) wichtige Informationen w. z. B. die Menge von K in der Molekülschicht und den Spin-Zustand im undotierten und im dotierten MnPc. Der dritte Teil beschäftigt sich mit den optischen Eigenschaften von MnPc, Alq3 und α-NPD als Reinmaterialien sowie mit K-dotierten Molekülen, in situ verfolgt mittels spektroskopischer Ellipsometrie (SE). Vom SE-Spektrum wurde der Imaginärteil der dielektrischen Funktion abgeleitet. Während α-NPD fast keine Änderung im Absorptionsspektrum nach der Dotierung zeigt, zeigt Alq3 dagegen ein Wandel zu einer dotierten Phase mit kleine Änderungen im Spektrum. Dabei hat MnPc drei stabile dotierte Phasen mit großen spektralen Änderungen. Außerdem zeigt die Oxidation von MnPc umgekehrt Eigenschaften zur dotierten Phase. Alle diese Messungen sind einzigartig und sehr wichtig für die Entwicklung von OLED und Spintronik Geräten.

Page generated in 0.5235 seconds