• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 249
  • 62
  • 40
  • 37
  • 16
  • 8
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 533
  • 101
  • 63
  • 50
  • 49
  • 45
  • 42
  • 39
  • 35
  • 32
  • 31
  • 29
  • 28
  • 28
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Determination of Effective Lifetime and Light Trapping Enhancement in Silicon using Free Carrier Absorption

Khabibrakhmanov, Ruslan January 2021 (has links)
A novel experimental technique has been developed for measuring the light trapping enhancement and the carrier recombination lifetime in silicon wafers. The technique is based on the pump/probe modulated free carrier absorption (MFCA) method, where the probe beam, attenuated by generated free carriers, carries information about the effective lifetime and the average light path enhancement in a textured silicon wafer. For the first time, a reflection mode MFCA technique is presented where the reflected part of the probe beam is used to perform measurements, while the conventional technique is based on measurements of the transmitted part of the probe beam. A theoretical model is presented to explain the behavior of the light beam in double-side polished and double-side textured silicon wafers. The model yields good agreement with the experimental results and explains the difference in the amplitudes of the reflected and transmitted signals. The results of the experimental measurements of the light path enhancement in a double-side textured sample are analyzed and the reasons for their deviation from the Lambertian limit are discussed. This work presents new applications of the MFCA technique and shows how it can be used for the simultaneous determination of more than one crucial characteristic of silicon solar cells. / Thesis / Master of Applied Science (MASc)
112

Electrochemical strategies to retrieve lost capacity in Li-ion batteries by reversed Li-trapping

Thulin, Christopher January 2023 (has links)
Since the transportation sector wants to move away from fossil fuels and become more dependen ton clean and green energy, the use of rechargeable batteries is a good solution. Lithium-based batteries work very well as rechargeable batteries in electric vehicles. To extend the cycle life of lithium-based batteries a reversed Li+-trapping protocol has been implemented to extract lostcapacity. Prior to the start of this project, reversed Li+-trapping has been used on a proof-of-concept level and no specific protocol has been utilised in conjunction with full cells. With a protocol that uses constant voltage discharge steps on every fifth cycle, trapped Li+ can diffuse out from the graphite (anode) and travel back to the NMC811 (cathode). This will result in a lower capacity loss than if it only had cycled with constant current, using a C-rate of 1C. If a cell is operated with a constant voltage discharge step on every cycle, high capacity can be maintained for many cycles. This could potentially be used as a formation cycle protocol. The capacity is higher in the long run if the constant voltage discharge step is applied on every fifth cycle rather than every cycle. With a constant voltage discharge cell voltage of 2.8 V good results are obtained. A constant voltage discharge cell voltage of 0 V will however destroy the cell due to Cucurrent collector dissolution.
113

Waveguide Architectures in Stimuli-responsive Actuating Hydrogels

Vaughan, Kevin January 2024 (has links)
Waveguide architectures were inscribed within two different stimuli-responsive hydrogels capable of actuation. An electroactive hydrogel, which deforms when placed within an electric field, is demonstrated as a method for remote actuation and steering of light outputs. Lattices of waveguide with diameters on the microscale were embedded within hydrogel prisms, achieved through a nonlinear light propagation process known as self-trapping. This process is a result of balance between the natural divergence of light and self-focusing effects caused by an irreversible positive refractive index change during photopolymerization. Waveguiding structures are inscribed in the material because of this process. Square (2D) and near-cubic (3D) lattices were inscribed in hydrogel prisms, demonstrating the ability to remotely steer one or two light outputs simultaneously using an electric field. The overall optical effect is reminiscent of camouflaging techniques observed in marine creatures (ie. cephalopods). Additionally, a novel volumetric 3D printing technique previously demonstrated by the Saravanamuttu group was implemented to fabricate hydrogel cylinders capable of photothermal actuation. Coupling a thermoresponsive hydrogel material with a photoabsorber, areas irradiated by a light source are observed to contract. These contractions lead to the deflection of waveguiding cylinders towards the light source, reminiscent of the phototropic behaviours observed in particular plants (ie. sunflowers). The results of these studies provide insight for the fabrication of functional materials through nonlinear light propagation. Understanding these systems could provide knowledge for the fabrication of other stimuli-responsive materials with light-guiding properties. / Thesis / Master of Science (MSc)
114

Detection Of Sepsis Biomarkers Using Microfluidics

Damodara, Sreekant January 2021 (has links)
Sepsis is a “life-threatening organ dysfunction caused by a dysregulated host response to infection” that has a widespread impact on human life around the world. It affects more than 1.5 million people, killing at least 250,000 each year in the US alone and affects 90,000 people annually, with estimated mortality rates of up to 30% in Canada. Our understanding of the different biochemical pathways that in the progression of sepsis has improved patient care for sepsis patients. One part of patient care is the use of biomarkers for patient prognosis that draws on the full range of relevant and available information to model the possible outcomes for an individual. Numerous biomarkers have been studied for patient prognosis that includes Procalcitonin (PCT), C-reactive protein (CRP), TNF-α, cfDNA, protein C and PAI 1. Using a panel of multiple biomarkers provided more accuracy in patient prognosis than using individual biomarkers and one such panel that was proposed used cfDNA, protein C, platelet count, creatinine, Glasgow Coma Scale [GCS] score, and lactate. Commercial, low cost POC techniques were available for the measurement of all biomarkers besides cfDNA and protein C. The objective of this doctoral thesis was chosen to develop low cost, microfluidic devices for the measurement of protein C and cfDNA using nonspecific fluorescence dyes that would enable the eventual integration of the systems and improve patient prognosis. The measurement of protein C in plasma required the separation of protein C from interfering proteins in plasma. This was done through the development of a two-stage separation process that included the development of tunable agarose isoelectric gates for separating proteins using their isoelectric point and the miniaturization of immobilized metal affinity chromatography and its extension to Barium for the selective binding of proteins using their chemical affinity. This was performed in a xurographically fabricated chip to reduce costs and enable the use of geometric focusing of the electric field to enable the operation of the device at a lower applied voltage. The challenges faced with cfDNA were different due to the different characteristics of the material and less interference from plasma. The requirement was to measure the total cfDNA content with minimal cost in comparison to currently available techniques. This was achieved through the development of thread microfluidic devices that showed the use of thread for automated aliquoting of samples by controlling length and twists of the thread. Preconcentration and use of external apparatus was avoided by showing that thread could be used to amplify fluorescence response to a range that was sufficient for the measurement of cfDNA in sepsis patients. A portable fluorescence imaging setup was developed for this purpose and was used in demonstration for the measurement of cfDNA in plasma with sufficient resolution. In conclusion, we developed technologies for rapid and low-cost measurement of protein C and cfDNA using xurographic and thread-based microfluidics that may serve as valuable in improving patient prognosis. / Thesis / Doctor of Philosophy (PhD) / Sepsis is a major reason for hospitalization and cause of death in hospitals worldwide. Its treatment is highly time sensitive with each hour of delay in diagnosis causing a significant increase in chances of death. Due to the wide range of symptoms that can be caused by sepsis, its diagnosis uses a scoring method that relies on the expertise of the onsite doctors and nurses increasing their workload. A more objective system for detection requires the measurement of the quantities of different biomarkers in blood. Biomarkers are proteins present in plasma that change in quantity due to the body’s reaction to sepsis. Several of these biomarkers have been identified and studied for their use in both diagnosing the presence of sepsis and in predicting the outcome with the current treatment plan. In this PhD study, we chose two of these biomarkers – circulating free DNA (cfDNA) and protein C and developed low-cost techniques for rapidly measuring their concentration in blood plasma. To do this, we made microfluidic devices with techniques that use low-cost materials such as plastic sheets and threads.The device for the measurement of protein C required separating it from many other proteins in plasma. We showed that a device fabricated from stacked plastic sheets and integrated with agarose gels could be used for the measurement of protein C in plasma with sufficient resolution to help with treating septic patients at a cost of less $5 per device. Similarly, we showed that a device that integrated threads with plastic sheets could be used for measuring the quantity of cfDNA in plasma in a portable format within 15 minutes. Overall, we developed tools for rapid measurement of two biomarkers of sepsis using low cost device that cost under $5 to run and could led to improving the quality of care for sepsis patients.
115

Interaction between CD36 and Oxidized LDL Modulates Macrophage Cytoskeletal Functions: A Mechanism of Macrophage Trapping

Park, Young Mi 06 July 2010 (has links)
No description available.
116

An Experimental Investigation of Radiation Trapping in Optical Molasses

Stites, Ronald William 05 August 2005 (has links)
No description available.
117

Determining the role of a candidate gene in Drososphila muscle development

Maity, Chaitali 19 April 2006 (has links)
No description available.
118

Photogeneration of Aryloxenium Ions: Photolysis of 4-acetoxy-4-(4'-methylphenyl)-2,5-cyclohexadienone in Acetonitrile as a Precursor

Leopold, Samuel Harris 12 May 2008 (has links)
No description available.
119

STUDY OF ANNEALING BEHAVIOR OF AL AND PB USING POSITRON ANNIHILATION LIFETIME SPECTROSCOPY

SALAH UDDIN, MD 11 August 2016 (has links)
No description available.
120

Studies on graph-based coding systems

Sun, Jing 30 September 2004 (has links)
No description available.

Page generated in 0.0683 seconds