• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 95
  • 70
  • 67
  • 33
  • 16
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 319
  • 319
  • 166
  • 151
  • 72
  • 72
  • 68
  • 67
  • 61
  • 57
  • 40
  • 36
  • 32
  • 31
  • 30
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Investigations of the Effects of Lowering the Temperature in Full Scale Mesophilic Biogas Digesters at a Wastewater Treatment Plant

Wilhelmsson, Ella January 2020 (has links)
This thesis has investigated the effects of running the two full scale biogas digesters at Slottshagen wastewater treatment plant at 34 °C compared to 37 °C, in terms of process stability, biogas production and energy savings with the aim of saving energy and money by not heating the digesters as much. The main objective was to investigate whether it is at all possible to operate the biogas process at 34 °C or if the process becomes inhibited or otherwise unstable. If the process could be operated at 34 °C it might mean savings of both energy and money, provided that there is still a sufficient production of biogas.The experiment lasted for three months and investigated the short-term effects of the reduction of temperature. The process was monitored closely, and samples from the reactors were collected and analysed twice a week to ensure the stability of the biogas process. Several parameters were monitored online, the biogas production and methane content amongst others. Other parameters were calculated, such as the degree of degradation and specific methane production. This was done to ensure process stability and a sufficient production of biogas. The energy balance was calculated to evaluate if energy was saved by lowering the temperature in the digesters.The results show that the biogas process does remain stable at 34 °C while still producing a satisfactory amount of biogas during the short time of the experiment. Calculations show that both energy and money has been saved during the experiment. However, the system is largely dependent on seasonal variations, therefore further studies over a longer time period would be desirable. During the course of the thesis it has also become evident that the biogas process at Slottshagen is irregular in several aspects, and that it would be beneficial to even the process out, especially with regards to the hydraulic retention time. Making the process more even would enable further improvements to be made and simplify interpretations and comparisons of processstability data.
22

Online fluorescence monitoring of effluent organic matter in wastewater treatment plants

Carstea, E.M., Zakharova, Y.S., Bridgeman, John 16 February 2018 (has links)
Yes / Wastewater treatment is an energy-intensive operation. Energy consumption is forecast to increase by 60% in the forthcoming decade due to tightened legislation surrounding the discharge of final effluent to watercourses. Treatment plants rely on the time-consuming and unreliable biochemical oxygen demand to assess the quality of final effluent, leading to process inefficiencies. Here, the authors show that fluorescence spectroscopy is a robust technique for real-time monitoring of changes in effluent quality. Three portable fluorimeters were installed for one month at the final effluent discharge point of a large municipal wastewater treatment plant. The authors show that organic matter composition of the wastewater varies diurnally depending on the flow rate and antecedent rainfall. High fluorescence intensity and ammonia are attributed to sewage sludge liquor, which is regularly discharged to the treatment plant. Moreover, elevated fluorescence intensities were recorded as a result of process failure following a power outage. The study shows that online fluorescence analysis is capable of detecting both minor changes in effluent quality and issues with treatment process performance. / European Commission Framework Programme 7, Marie Curie IEF (PIEF-GA-2012-329962) and the Core Program, ANCS (PN 16.40.01.01).
23

Assessment of the Basis for Increased Illness in Workers Exposed to Biosolids

Niang, Mamadou 22 October 2020 (has links)
No description available.
24

Assessing the Sources of Microplastic Pollution in The Maumee Watershed: A Geospatial Approach

Ahmed, Tanzia Tasneem January 2021 (has links)
No description available.
25

Remoção de fósforo de efluentes de estações de tratamento biológico de esgotos utlizando lodo de estação de tratamento de água. / Phosphorus removal in effluent of wastewater treatment plant with water treatment residuals (WTR).

Chao, Iara Regina Soares 18 October 2006 (has links)
O fósforo é apontado como o principal responsável pelo enriquecimento nutricional de mananciais de abastecimento público, desencadeando por meio do fenômeno de eutrofização, a floração de grupos algais tóxicos e, portanto a sua remoção passa a ter grande significado para a saúde pública e para o meio ambiente. O presente trabalho foi desenvolvido com os objetivos de: avaliar a eficiência de remoção de fósforo do efluente de um sistema convencional de lodos ativados (Estação de Tratamento de Esgotos de Barueri) pelo lodo de uma estação de tratamento de água, que utiliza sulfato de alumínio como coagulante (Estação de Tratamento de Água do Alto Cotia) e verificar a influência das seguintes variáveis nesta remoção: tempo de permanência do lodo no decantador, dosagem de lodo, potencial zeta, teor de matéria orgânica no lodo, pH da mistura lodo/efluente e uso de polímero na coagulação/floculação da água bruta. Para o desenvolvimento prático da pesquisa, foram realizados ensaios de jarros, variando as condições operacionais, de tal forma a averiguar o efeito das variáveis mencionadas anteriormente na remoção do fósforo. Observou-se que esta remoção era dependente do pH; da dosagem de lodo; do tempo de permanência do mesmo no decantador; do tempo de mistura e da presença de polímero. Independia do potencial zeta e do tempo de sedimentação. A máxima remoção obtida foi de 100% (concentração inicial de 2,9 mg P/L), em pH de 4,5, com dosagem de 37 mg lodo/L, tempo de mistura de 15 minutos a 40 s-1 de gradiente, tempo de sedimentação de 30 minutos, tempo de permanência do lodo no decantador de 80 dias, sem polímero. Nestas condições, a concentração de fósforo do efluente tratado foi de 0,01mg P/L. Os resultados obtidos no presente trabalho sinalizam uma alternativa tecnológica, que pode vir a ser utilizada em projetos sustentáveis, em que as estações de tratamento de esgotos e estações de tratamento de água sejam planejadas de forma integrada, considerando o reaproveitamento e encaminhamento do lodo de ETA como insumo a ser utilizado no fim do processo de tratamento de esgotos para remoção de fósforo do efluente final, em consonância com os conceitos de produção mais limpa na busca da qualidade. / Phosphorus is considered as the main responsible for the nutritional enrichment of reservoirs of public drinking water supplies, because eutrophication process has resulted in toxic algae blooms, and therefore its removal has a great significance since these toxins represent a public health risk and environment. The aim of this research work was to evaluate the efficiency of removal of phosphate from activated sludge process (Barueri Wastewater Treatment Plant) by sludge from water treatment plant that uses aluminum sulfate as coagulant (WTP Alto Cotia) and verify the influence of following operational parameters in this removal: aging of sludge, sludge dose, zeta potential, mixing time, sedimentation time, concentration of organic matter, pH and use of polymer in coagulation/flocculation process. For the experimental research, the jar tests were operated with different conditions. The removal of phosphate was dependent of pH, sludge dose, aging of sludge, mixing time and presence of polymer. It was independent of zeta potential and sedimentation time. It was verified that maximum efficiency of phosphate removal was around 100% (initial concentration = 2,9 mgP/L), in pH 4,5 with the use of 37 mg of sludge from Alto Cotia Water Treatment Plant per liter of effluent from Barueri Wastewater Treatment Plant, with a mixing time of 15 minutes at 40 s-1, 30 minutes for sedimentation time, 80 days for aging of sludge, without polymer. Under these conditions it was obtained phosphate concentrations around 0,01mgP/L. Results obtained in this research work show a technological alternative, that can be used in projects, that sewage and water treatment plants can be planned together, considering the reuse and forwarding the water treatment plant sludge as beneficial use in the end of the sewage treatment process for the phosphorus removal, in consonance with concepts of a cleaner production practices in Environmental Management Systems.
26

Remoção de fósforo de efluentes de estações de tratamento biológico de esgotos utlizando lodo de estação de tratamento de água. / Phosphorus removal in effluent of wastewater treatment plant with water treatment residuals (WTR).

Iara Regina Soares Chao 18 October 2006 (has links)
O fósforo é apontado como o principal responsável pelo enriquecimento nutricional de mananciais de abastecimento público, desencadeando por meio do fenômeno de eutrofização, a floração de grupos algais tóxicos e, portanto a sua remoção passa a ter grande significado para a saúde pública e para o meio ambiente. O presente trabalho foi desenvolvido com os objetivos de: avaliar a eficiência de remoção de fósforo do efluente de um sistema convencional de lodos ativados (Estação de Tratamento de Esgotos de Barueri) pelo lodo de uma estação de tratamento de água, que utiliza sulfato de alumínio como coagulante (Estação de Tratamento de Água do Alto Cotia) e verificar a influência das seguintes variáveis nesta remoção: tempo de permanência do lodo no decantador, dosagem de lodo, potencial zeta, teor de matéria orgânica no lodo, pH da mistura lodo/efluente e uso de polímero na coagulação/floculação da água bruta. Para o desenvolvimento prático da pesquisa, foram realizados ensaios de jarros, variando as condições operacionais, de tal forma a averiguar o efeito das variáveis mencionadas anteriormente na remoção do fósforo. Observou-se que esta remoção era dependente do pH; da dosagem de lodo; do tempo de permanência do mesmo no decantador; do tempo de mistura e da presença de polímero. Independia do potencial zeta e do tempo de sedimentação. A máxima remoção obtida foi de 100% (concentração inicial de 2,9 mg P/L), em pH de 4,5, com dosagem de 37 mg lodo/L, tempo de mistura de 15 minutos a 40 s-1 de gradiente, tempo de sedimentação de 30 minutos, tempo de permanência do lodo no decantador de 80 dias, sem polímero. Nestas condições, a concentração de fósforo do efluente tratado foi de 0,01mg P/L. Os resultados obtidos no presente trabalho sinalizam uma alternativa tecnológica, que pode vir a ser utilizada em projetos sustentáveis, em que as estações de tratamento de esgotos e estações de tratamento de água sejam planejadas de forma integrada, considerando o reaproveitamento e encaminhamento do lodo de ETA como insumo a ser utilizado no fim do processo de tratamento de esgotos para remoção de fósforo do efluente final, em consonância com os conceitos de produção mais limpa na busca da qualidade. / Phosphorus is considered as the main responsible for the nutritional enrichment of reservoirs of public drinking water supplies, because eutrophication process has resulted in toxic algae blooms, and therefore its removal has a great significance since these toxins represent a public health risk and environment. The aim of this research work was to evaluate the efficiency of removal of phosphate from activated sludge process (Barueri Wastewater Treatment Plant) by sludge from water treatment plant that uses aluminum sulfate as coagulant (WTP Alto Cotia) and verify the influence of following operational parameters in this removal: aging of sludge, sludge dose, zeta potential, mixing time, sedimentation time, concentration of organic matter, pH and use of polymer in coagulation/flocculation process. For the experimental research, the jar tests were operated with different conditions. The removal of phosphate was dependent of pH, sludge dose, aging of sludge, mixing time and presence of polymer. It was independent of zeta potential and sedimentation time. It was verified that maximum efficiency of phosphate removal was around 100% (initial concentration = 2,9 mgP/L), in pH 4,5 with the use of 37 mg of sludge from Alto Cotia Water Treatment Plant per liter of effluent from Barueri Wastewater Treatment Plant, with a mixing time of 15 minutes at 40 s-1, 30 minutes for sedimentation time, 80 days for aging of sludge, without polymer. Under these conditions it was obtained phosphate concentrations around 0,01mgP/L. Results obtained in this research work show a technological alternative, that can be used in projects, that sewage and water treatment plants can be planned together, considering the reuse and forwarding the water treatment plant sludge as beneficial use in the end of the sewage treatment process for the phosphorus removal, in consonance with concepts of a cleaner production practices in Environmental Management Systems.
27

Load management on a municipal water treatment plant / Lötter Adriaan Els

Els, Lötter Adriaan January 2015 (has links)
Water Treatment Plants (WTPs) supply potable water which is transferred by pumps to various end users. WTPs and other sub-systems are energy intensive with pump installed capacities varying between 75 kW – 6 000 kW. It has therefore become important to optimise the utilisation of WTPs. Cost savings can be achieved and the load on the national grid can be reduced. The aim of this study is to develop and implement load management strategies on a municipal WTP. In this investigation the high lift pumps are deemed to be the largest consumers of electricity. Strategies to safely implement load management on a WTP were researched. By optimising the operations of the pumps, significant cost savings can be achieved. Comparisons between different electricity tariff structures were done. It was found plausible to save R 990 000 annually, on a pumping station with four 1 000 kW pumps installed, when switching to a time-of-use dependent tariff structure. Strategies to optimise plant utilisation while attempting a load management study include the optimisation of filter washing methods and raw water operations. An increase of 34% in efficiency for a filter backwash cycle was achieved. To accommodate the effects of the load management on the WTP, the operation of valves that allow water to distribute within the plant was also optimised. The implemented control strategies aimed to accomplish the full utilisation of the WTP and sub-systems to achieve savings. An average evening peak period load shift impact of 2.21 MW was achieved. Due to filter modifications the plant is able to supply 5% more water daily. A conclusion is drawn regarding the success of the strategies implemented. Recommendations are made for further research. / MIng (Mechanical Engineering), North-West University, Potchefstroom Campus, 2015
28

Load management on a municipal water treatment plant / Lötter Adriaan Els

Els, Lötter Adriaan January 2015 (has links)
Water Treatment Plants (WTPs) supply potable water which is transferred by pumps to various end users. WTPs and other sub-systems are energy intensive with pump installed capacities varying between 75 kW – 6 000 kW. It has therefore become important to optimise the utilisation of WTPs. Cost savings can be achieved and the load on the national grid can be reduced. The aim of this study is to develop and implement load management strategies on a municipal WTP. In this investigation the high lift pumps are deemed to be the largest consumers of electricity. Strategies to safely implement load management on a WTP were researched. By optimising the operations of the pumps, significant cost savings can be achieved. Comparisons between different electricity tariff structures were done. It was found plausible to save R 990 000 annually, on a pumping station with four 1 000 kW pumps installed, when switching to a time-of-use dependent tariff structure. Strategies to optimise plant utilisation while attempting a load management study include the optimisation of filter washing methods and raw water operations. An increase of 34% in efficiency for a filter backwash cycle was achieved. To accommodate the effects of the load management on the WTP, the operation of valves that allow water to distribute within the plant was also optimised. The implemented control strategies aimed to accomplish the full utilisation of the WTP and sub-systems to achieve savings. An average evening peak period load shift impact of 2.21 MW was achieved. Due to filter modifications the plant is able to supply 5% more water daily. A conclusion is drawn regarding the success of the strategies implemented. Recommendations are made for further research. / MIng (Mechanical Engineering), North-West University, Potchefstroom Campus, 2015
29

Diatom analyses of sediment from Himmerfjärden estuary, southern archipelago of Stockholm : has the water discharge from a constructed sewage treatment plant led to eutrophication?

Elander, Lina January 2015 (has links)
A sediment core from Himmerfjärden estuary, south of Stockholm, was examined to detect records of eutrophication on the site since the opening of the sewage treatment plant Himmerfjärdsverket in 1974. The core was analysed with respect to the diatom record and lithology. Four macrofossil that were found in the sediment were dated using 14C-dating.    This study aims to detect changes in the environment of Himmerfjärden by using the diatom stratigraphy record. The results have been interpreted and discussed regarding natural environmental and climate change and/or anthropogenic impact, and detected changes will be associated with the history of the sampling site. The results show that the lowermost zone started to deposit around 1300-1490 cal yr BP and the homogeneous sediment indicates that the area was not suffering from hypoxia at that time. There is a successive transition towards more distinct lamination further up in the core which show that the environment in Himmerfjärden have changed and become hypoxic. This may have to do with factors such as the opening of heavily trafficked Södertälje Canal, and also the increased nutrient input from Himmerfjärdsverket.    This study could be a part of the process of working towards a “good environmental status” in the Baltic Sea. However, continued and improved work is needed for further and more accurate interpretations.
30

The bio-disposal of lignocellulose substances with activated sludge

Qi, Bing Cui 03 1900 (has links)
Thesis (PhD)--University of Stellenbosch, 2001. / ENGLISH ABSTRACT: Lignocellulose is the principal form of biomass in the biosphere and therefore the predominant renewable source in the environment. However, owing to the chemical and structural complexity of lignocellulose substrates, the effective and sustainable utilization of lignocellulose wastes is limited. Many environments where lignocellulose residues are ordinarily stored can be highly acidic (e.g. landfills), and under these circumstances biodegradation of the lignocellulose is slow and unhygienic. Owing to the metabolic activities of the micro-organisms, the initially acidified habitats rapidly undergoes self-neutralization. A number of pathogenic bacteria (coliforms and Salmonella sp.) are present during this slow degradation process and it is therefore imperative to improve the efficiency and hygienic effects of the biodegradation of the lignocellulose. Although the fundamentals of biodegradation of lignocellulose have been widely investigated, many issues still need to be resolved in order to develop commercially viable technology for the exploitation of these waste products. For example, owing to the complex, heterogeneous structure of lignocellulose, the degree of solubilization, modification and conversion of the different components are not clear. Likewise, the overall anaerobic degradation of lignocellulose is not understood well as yet. In this study, the emphasis was on the promotion of solid anaerobic digestion of lignocellulose wastes for environmental beneficiation and waste reutilization. The degradation of lignocellulose in landfill environments was first simulated experimentally. Once the microbial populations and the degradation products of the system were characterized, the promotion of anaerobic digestion by use of activated sludge was studied. This included acidogenic fermentation, as well as recovery of the methanogenic phase. Moreover, special attention was given to the further disposal of humic acids or humic acid bearing leachates formed in the digestive system, since these acids pose a major problem in the digestion of the lingocellulose. With ultrasonication, approximately 50% of the lower molecular weight fraction of humic acids could be decomposed into volatile forms, but the higher molecular weight fraction tended to aggregate into a colloidal form, which could only be removed from the system by making use of ultrasonically assisted adsorption on preformed aluminium hydroxide floes. This was followed by an investigation of the microbial degradation of humic acids and the toxicity of these acids to anaerobic consortia. Further experimental work was conducted to optimize the biological and abiological treatment of lignocellulose in an upflow anaerobic sludge blanket (DASB) reactor fed with glucose substrate. The humic acids could be partially hydrolysed and decomposed by the acid fermentative consortia of the granules in the DASB reactor. Finally, solid mesothermophilic lignocellulose anaerobic digestive sludge can be viewed as a humus-rich hygienic product that can improve the fertility and water-holding capacity of agricultural soil, nourish plants and immobilize heavy metals in the environment as a bioabsorbent. / AFRIKAANSE OPSOMMING: Lignosellulose is die hoofbron van biomassa in die biosfeer en is daarom ook die belangrikste hernubare bron in die omgewing. As gevolg van die chemiese en strukturele kompleksiteit van lignosellulose substrate, is die doeltreffende en volhoubare benutting van lignosellulose afval egter beperk. Die suurgehalte van die omgewings waar lignosellulose reste gewoonlik gestoor word, soos opvullingsterreine, kan hoog wees en onder hierdie omstandighede is die biodegradasie van die lignosellulose stadig en onhigiënies. As gevolg van die metaboliese aktiwiteite van die mikro-organismes ondergaan die aanvanklik aangesuurde habitatte vinnig self-neutralisasie. 'n Aantal patogeniese bakterieë (koliforme en Salmonella sp.) is deurgaans gedurende dié stadige natuurlike proses teenwoordig en dit is dus van die grootste belang om die effektiwiteit en die higiëne van die bioafbreking van die lignosellulose-substraat te verhoog. Alhoewel die grondbeginsels van die bioafbreking van lignosellulose reeds wyd ondersoek is, moet verskeie probleme nog opgelos word ten einde kommersieel haalbare tegnologie te ontwikkel vir die ontginning van afvalprodukte. Byvoorbeeld, as gevolg van die komplekse, heterogene struktuur van lignosellulose, is die graad van solubilisering en die modifikasie en omskakeling van verskillende komponente nog onduidelik. Net so word die algehele anaerobiese afbreking van lignosellulose ook nog nie ten volle verstaan nie. In hierdie ondersoek het die klem geval op die bevordering van soliede anaerobiese digestie van lignosellulose afval vir omgewingsverbetering en die benutting van die afval. Die afbreking van lignosellulose in opvullingsterreine is eers eksperimenteel gesimuleer. Nadat die mikrobiese populasies en die afbrekingsprodukte gekarakteriseer is, is die bevordering van anaerobiese digestie deur die gebruik van geaktiveerde slyk bestudeer. Dit het asidogeniese fermentasie ingesluit, sowel as herwinning van die metanogeniese fase. Spesiale aandag is gegee aan die verdere verwerking van humus sure en humussuurbevattende legate wat in die digestiewe stelsel gegenereer is, aangesien die sure probleme veroorsaak het met die vertering van die lignosellulose. Met ultrasoniese straling is nagenoeg 50% van die lae-molekulêre massafraksie van die humussure ontbind in vlugtige vorm, maar die hoë-molekulêre massafraksie het geneig om in 'n kolloïdale vorm te aggregeer, wat slegs uit die stelsel verwyder kon word deur middel van ultrasonies ondersteunde adsorpsie op voorafgevormde aluminiumhidroksiedvlokkies. Dit is gevolg deur 'n ondersoek na die mikrobiese afbreking van humus sure en die toksisiteit van die sure ten opsigte van anaerobiese konsortia. Verdere eksperimentele werk is gedoen ten opsigte van die biologiese en abiologiese behandeling van lignosellulose in 'n opwaartsvloeiende anaerobiese slikkombersreaktor (OASK) gevoer met glukosesubstrate. Die humus sure kon gedeeltelik gehidroliseer en ontbind word deur die suurgistende konsortia van die granules in die OASK reactor. Ten slotte kan die vaste termofiliese-mesofiliese anaerobiese lignosellulose verteringslik ook gesien word as 'n humusryke higiëniese produk wat die vrugbaarheid en die waterhoudende vermoë van landbougrond kan verhoog, plante kan voed en kan funksioneer as bioabsorbeerder van swaarmetale in die omgewing.

Page generated in 0.0688 seconds