• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 415
  • 102
  • 86
  • 28
  • 28
  • 19
  • 16
  • 15
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 821
  • 375
  • 346
  • 268
  • 189
  • 188
  • 182
  • 170
  • 169
  • 169
  • 169
  • 169
  • 169
  • 169
  • 134
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Adhesion in the wheel-rail contact

Zhu, Yi January 2013 (has links)
To attract more customers and compete with other modes of transportation, railway transport needs to ensure safety, punctuality, high comfort, and low cost; wheel–rail adhesion, i.e., the transmitted tangential force in the longitudinal direction during driving and braking, plays an important role in all these aspects. Adhesion needs to be kept at a certain level for railway operation and maintenance. However, wheel−rail contact is an open system contact. Different contaminants can present between the wheel and rail surfaces, forming a third-body layer that affects the adhesion. Prediction of wheel–rail adhesion is important for railway operations and research into vehicle dynamics; however, this prediction is difficult because of the presence of contaminants. This thesis deals with wheel–rail adhesion from a tribological perspective. The five appended papers discuss wheel–rail adhesion in terms of dry conditions, lubricated conditions, leaf contamination, iron oxides, and environmental conditions. The research methodologies used are numerical modelling, scaled laboratory experiments, and field tests. The research objective is to understand the mechanisms of the adhesion loss phenomenon.  A numerical model was developed to predict wheel–rail adhesion based on real measured 3D surfaces. Computer simulation indicates that surface topography has a larger impact on lubricated than on dry contacts. Plastic deformation in asperities is found to be very important in the model. Ball-on-disc tests indicate that water can give an extremely low adhesion coefficient on smooth surfaces, possibly due to surface oxidation. Investigation of lubricated contacts at low speed indicates that oil reduces the adhesion coefficient by carrying a normal load, while adhesion loss due to water depends on the surface topography, water temperature, and surface oxidation. A field investigation indicates that leaves reduce the friction coefficient because of the chemical reaction between leaves and bulk materials. The thickness of the surface oxide layer was found to be an essential factor determining adhesion reduction. Pin-on-disc experiments found a transition in the friction coefficient with regard to the relative humidity, due to a trade-off between the water molecule film and the hematite on the surface. / <p>QC 20131031</p>
92

Friction induced plastic deformation of high polymer surfaces

Whitten, Philip Gregory. January 2004 (has links)
Thesis (Ph.D.)--University of Wollongong, 2004. / Typescript. Includes bibliographical references: p. 172-180.
93

Modified epoxy coatings on mild steel a study of tribology and surface energy /

Dutta, Madhuri. Brostow, Witold, January 2009 (has links)
Thesis (M.S.)--University of North Texas, Aug., 2009. / Title from title page display. Includes bibliographical references.
94

Nanomechanical properties and nanotribology of ternary metal nitrides nanocomposite

Mihut, Dorina M. January 1900 (has links)
Thesis (Ph.D.)--University of Nebraska-Lincoln, 2006. / Title from title screen (site viewed May 23, 2007). PDF text: 205 p. : ill. ; 2.40Mb UMI publication number: AAT 3237051. Includes bibliographical references. Also available in microfilm and microfiche formats.
95

Tribological behaviour of nano-composite UHMWPE on ski surfaces and the role of hydrophobicity

Backéus, Anders January 2015 (has links)
Ultra High Molecular Weight Polyethylene (UHMWPE) has been used as a ski sole material for many years due to its good tribological properties, good wear resistance and low friction coefficient. Recent studies have showed improved performance on wear rate and hydrophobicity with nanoparticle reinforced UHMWPE. In this study, different kinds of nano-composite UHMWPE’s were tested on snow to investigate if they are suitable as a ski sole material and to find the type of nano-composite UHMWPE that has the greatest potential. Further, the mechanisms of hydrophobicity and its influence on the friction level were examined. The friction coefficient was measured in a ski test rig and simple demonstrations under a microscope were made to simulate how water is dragged along the ski sole in contact with wet snow. Mechanical properties were measured with a CSM Nanoindentation Instrument and surface topography was examined in a Wyko Optical Profiler. The cross-linked UHMWPE material showed the lowest friction coefficient on snow. The hydrophobic demonstrations, together with the ski test results, questions the suggestion that high hydrophobicity enhances the ski glide. Nanoindentation was proved to give valuable data for mechanical properties, but it should be questioned whether it is a good technique for comparing different nano-composite UHMWPE materials. The ski tests show the importance of the characteristics of snow.
96

Tribological investigation of nanocomposite thin films of transitional metal nitrides with silver inclusions

Stone, D'Arcy S 01 December 2011 (has links)
In this tribological study, a temperature dependent inquiry of the changes in chemistry and crystal structure of two selected double metal oxides is undertaken. It is known that chameleon coatings of Mo2N/Ag/MoS2 produce a friction coefficient of 0.1 from wear testing at 600 °C for 300,000 cycles. The low friction is attributed to the formation of silver molybdates layers, a lubricious double-metal oxide, in the coating. Double-metal oxides consisting of a group 6 transitional metal and silver (silver molybdate (Ag2Mo2O7) and silver tungstate (Ag2WO4)) were used for this investigation. Thin films and powders were investigated using high temperature x-ray diffraction, high-temperature Raman spectroscopy and differential scanning calorimetry in tandem with sliding tests from 25 to 600 °C. Our results were compared to external ab-initio molecular dynamic simulations performed elsewhere to qualify experimental results. The layered atomic structure of silver molybdate facilitates sliding, resulting in a low coefficient of friction (<0.2) from 300-500 °C. Unlike Ag2Mo2O7, however, Ag2WO4 does not possess a layered atomic structure and produced coefficients of friction (>0.4) in all temperature ranges between room temperature and 500 °C. Applying the knowledge gained from prior studies of the intrinsic properties of double metal oxides of group 6, chameleon coatings consisting of group 5 transitional metal nitrides (vanadium nitride, niobium nitride, and tantalum nitride) with silver inclusions were created using unbalanced magnetron sputtering to investigate their potential application as adaptive, friction reducing coatings. The coatings were tribotested against a Si3N4 counterface in the 22 to 1000 °C temperature range. In-situ Raman Spectroscopy measurements were taken during heating and wear testing at 700 °C to identify the evolution of phases in the coatings' surfaces and in the wear track. The chemical and structural properties of the coatings were also characterized before and after wear testing using x-ray diffraction. At higher temperatures, oxygen, silver and the transition metals react on the surface to form potentially lubricious double oxide phases (silver vanadate, silver niobate and silver tantalate). All coatings performed similarly up to 750 °C. The VN/Ag coating, however, had a lower coefficient of friction at 750 °C comparatively to TaN/Ag and NbN/Ag, likely due to its reported lower melting temperature (450 °C) and its layered crystal structure.
97

Caracterização de materiais utilizados na fabricação de cilindros de laminação submetidos ao desgaste abrasivo /

Cornélio, Gilson Teixeira. January 2006 (has links)
Resumo: O avanço da tecnologia de laminação incrementou as solicitações sobre os cilindros laminadores, e, portanto, o desenvolvimento de materiais mais resistentes ao desgaste, visando aumento da produtividade do laminador e melhor qualidade superficial dos produtos laminado, em especial tiras a quente. Como estudo de desgaste em campo é muito complexa devido à influência de diversos mecanismos e muitas vezes combinados entre si, os ensaios laboratoriais têm se mostrado como um meio mais fácil para estudar os materiais em serviço, além de auxiliar o projeto novas ligas. Dessa forma, foi proposto um ensaio de desgaste abrasivo puro para um tribômetro Plint & Partners, modelo TE-079, com o intuito de simular condições de utilização das últimas cadeira do trem acabador de um laminador de tiras a quente. Para sua validação foram utilizados três materiais: o ferro fundido de coquilhamento indefinido, o ferro fundido branco de alto cromo e o ferro fundido branco multicomponente, os quais apresentam comportamento conhecido em serviço. Esses materiais foram submetidos a uma caracterização metalográfica, microdureza e topografia de desgaste. Os resultado obtido mostraram-se coerentes com a prática observada na aplicação real, ou seja, reproduziram o comportamento de desgaste no laminador, sendo válida a proposta do ensaio tribológico. / Abstract: The progress towards mill technology has increased the demand on the rolling mill rolls, and therefore, the development of wear resistant seekink productivity of the rolling mills and better superficial quality of the rolled products, especially in the hot strip mill has also increased. As the wear study in field is very complex due to the influence of several mechanisms wish are usually combined amongst themselves, the labs test have shown an easy way to study the materials in service, besides aiding the project of new leagues. In that way, a pure abrasive wear test was developed tribômetro Plint & Partners, model TE-079 with the intent of simulating the job conditions in the hot strip mill finishing chairs. For the validation three materials were used: an indefinite chill cast iron, a high chrome cast iron and a kind of multicomponent white cast iron, which presents knowm behavior in service. Those materials were submitted to a metallography characterization, microhardness measurement and wear topograpy observation. The obtained results were shown coherent with the practice observed in the real application, and then became possible a prediction of that behavior for the materials projects developed at laboratory, being valid the proposal of the rehearsal tribológico. / Orientador: Valdir Alves Guimarães / Coorientador: Amilton Sinátora / Banca: Gustavo Aristides Santana Martínez / Banca: Enrico José Giordani / Mestre
98

Conception optimale d’un test d’extrusion directe pour l’investigation et l’identification par analyse inverse des propriétés tribologiques des matériaux métalliques utilisés dans le forgeage volumique à froid / Optimal design of a direct extrusion test for the investigation and the identification by inverse analysis of tribological properties of metallic materials used in cold bulk forming

Pham, Duc Thien 14 October 2011 (has links)
Dans l’industrie de la mise en forme des matériaux métalliques, le frottement joue un rôle très important. Cependant, il est difficile à contrôler totalement, notamment dans les procédés complexes où le taux de nouvelles surfaces générées lors de la déformation plastique est important. La thèse propose d’identifier par analyse inverse les propriétés tribologiques du matériau, directement à partir de la courbe donnant la force en fonction du déplacement pour un procédé d'extrusion directe. La conception d’une filière d’extrusion, avec des dimensions optimales pour maximiser l’influence du frottement a été faite à l’aide de calculs analytiques en se basant sur des critères particuliers tels que: la capacité maximale de la presse, la maximisation de la longueur de frottement, le rapport entre la puissance de frottement et la puissance de déformation et la limite du taux de réduction pour éviter l’endommagement du matériau. Comme dans le procédé d’extrusion il existe un certain couplage entre l’influence des paramètres rhéologiques et des paramètres tribologiques, des tests de compression d’éprouvettes «haltères» ont été réalisés dans une première étape afin d’identifier la loi de comportement rhéologique du matériau. La conception du test proposé a été validée par des simulations numériques avec FORGE2®. Les simulations numériques ont été également effectuées pour analyser la sensibilité des paramètres rhéologiques et tribologiques du matériau sur la force d’extrusion. L’influence de la géométrie de la filière sur la courbe de force a été examinée en détail. Une campagne d’essais a été réalisée pour l’alliage d’aluminium AA5083. La loi de comportement du matériau a été en conséquence identifiée par analyse inverse à partir de la courbe expérimentale donnant la force de compression des éprouvettes «haltères». Dans une deuxième étape, les propriétés tribologiques du matériau pour différents modèles de frottement ont été ensuite identifiées par analyse inverse à partir de la courbe donnant la force d’extrusion. La méthode d’identification par analyse inverse a été enfin validée par la simulation d’un procédé industriel d’extrusion. La campagne d’études expérimentales a été complétée par la caractérisation du matériau par des mesures de dureté, des mesures de diffraction des rayons X et des mesures de diffraction des électrons rétrodiffusés (EBSD) afin de mettre en évidence l’évolution de la surface des pièces après la déformation plastique. Les résultats indiquent que le frottement a une influence importante sur l’évolution des orientations cristallines de la surface du matériau extrudé. / In the industry of metal forming, friction plays a very important role. However, it is difficult to control completely this phenomenon, especially in the complex processes where the rate of the new surface generated during the plastic deformation is important. The thesis proposes to identify by inverse analysis the tribological properties of material, directly starting from the curve of the load versus the displacement of a direct extrusion process. The design of an extrusion die, with optimal dimensions to maximize the influence of friction, was carried out using analytical calculations based on particular criteria such as: the maximum capacity of the press, the maximization of the friction length and of the ratio between the friction power and the deformation power, the limit of the reduction rate to avoid damage of the material. Since in the extrusion process there is a certain coupling between the influence of the rheological parameters and the tribological parameters, compression tests using "dumbbells" specimens were carried out in a first stage in order to identify the rheological behavior law of the material. The design of the proposed test has been validated by numerical simulations using FORGE2®. The numerical simulations were also performed in order to analyze the sensitivity of rheological and tribological parameters of the material on the extrusion load. The influence of the geometry of the die on the extrusion load curve has been examined in detail. A campaign of tests was carried out for the AA5083 aluminum alloy. The behavior law of the material was consequently identified by inverse analysis starting from the experimental load curve of compression tests using "dumbbells" specimens. In a second step, the tribological properties of the material for different friction models were then identified by inverse analysis starting from the extrusion load curve. The method of identification by inverse analysis was finally validated by the simulation of an industrial extrusion process. The campaign of experimental studies has been completed by the characterization of the material by measurements of hardness, X-ray diffraction measurements and electron backscattered diffraction (EBSD) measurements in order to highlight the evolution of the surface of the extruded specimen after the plastic deformation. The results indicate that friction has an important influence on the evolution of crystal orientations of the surface of the extruded material.
99

Systematic Studies on Novel Polymeric Nanocomposites Embedded with a Well-Defined Fine Network / 精密微細ネットワークが組み込まれた新規ポリマー系ナノ複合材料に関する系統的研究

Shimizu, Yoshihiko 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第21795号 / 工博第4612号 / 新制||工||1718(附属図書館) / 京都大学大学院工学研究科高分子化学専攻 / (主査)教授 辻井 敬亘, 教授 山子 茂, 教授 渡辺 宏 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
100

Tribofilm Formation of PTFE-Cr on Different Counterbody Materials for Dry Sliding Applications

Haque, Faysal Mahmud Anzamul 21 July 2023 (has links)
No description available.

Page generated in 0.0321 seconds