Spelling suggestions: "subject:"bivariate normal""
1 |
Statistical models in environmental and life sciencesRajaram, Lakshminarayan 01 June 2006 (has links)
The dissertation focuses on developing statistical models in environmental and life sciences. The Generalized Extreme Value distribution is used to model annual monthly maximum rainfall data from 44 locations in Florida. Time dependence of the rainfall data is incorporated into the model by assuming the location parameter to be a function of time, both linear and quadratic. Estimates and confidence intervals are obtained for return levels of return periods of 10, 20, 50, and 100 years. Locations are grouped into statistical profiles based on their similarities in return level graphs for all locations, and locations within each climatic zone. A family of extreme values distributions is applied to model simulated maximum drug concentration (Cmax) data of an anticoagulant drug. For small samples (n <̲ 100) data exhibited bimodality. The results of investigating a mixture of two extreme value distributions to model such bimodal data using two-parameter Gumbel, Pareto and Weibu
ll concluded that a mixture of two Weibull distributions is the only suitable FTSel.For large samples , Cmax data are modeled using the Generalized Extreme Value, Gumbel, Weibull, and Pareto distributions. These results concluded that the Generalized Extreme Value distribution is the only suitable model. A system of random differential equations is used to investigate the drug concentration behavior in a three-compartment pharmacokinetic model which describes coumermycin's disposition. The rate constants used in the differential equations are assumed to have a trivariate distribution, and hence, simulated from the trivariate truncated normal probability distribution. Numerical solutions are developed under different combinations of the covariance structure and the nonrandom initial conditions. We study the dependence effect that such a pharmacokinetic system has among the three compartments as well as the effect of variance in identifying the concentration behavior in each compartment.
We identify the time delays in each compartment. We extend these models to incorporate the identified time delays. We provide the graphical display of the time delay effects on the drug concentration behavior as well as the comparison of the deterministic behavior with and without the time delay, and effect of different sets of time delay on deterministic and stochastic behaviors.
|
2 |
Inferences about Parameters of Trivariate Normal Distribution with Missing DataWang, Xing 05 July 2013 (has links)
Multivariate normal distribution is commonly encountered in any field, a frequent issue is the missing values in practice. The purpose of this research was to estimate the parameters in three-dimensional covariance permutation-symmetric normal distribution with complete data and all possible patterns of incomplete data. In this study, MLE with missing data were derived, and the properties of the MLE as well as the sampling distributions were obtained. A Monte Carlo simulation study was used to evaluate the performance of the considered estimators for both cases when ρ was known and unknown. All results indicated that, compared to estimators in the case of omitting observations with missing data, the estimators derived in this article led to better performance. Furthermore, when ρ was unknown, using the estimate of ρ would lead to the same conclusion.
|
3 |
A Study on the Correlation of Bivariate And Trivariate Normal ModelsOrjuela, Maria del Pilar 01 November 2013 (has links)
Suppose two or more variables are jointly normally distributed. If there is a common relationship between these variables it would be very important to quantify this relationship by a parameter called the correlation coefficient which measures its strength, and the use of it can develop an equation for predicting, and ultimately draw testable conclusion about the parent population.
This research focused on the correlation coefficient ρ for the bivariate and trivariate normal distribution when equal variances and equal covariances are considered. Particularly, we derived the maximum Likelihood Estimators (MLE) of the distribution parameters assuming all of them are unknown, and we studied the properties and asymptotic distribution of . Showing this asymptotic normality, we were able to construct confidence intervals of the correlation coefficient ρ and test hypothesis about ρ. With a series of simulations, the performance of our new estimators were studied and were compared with those estimators that already exist in the literature. The results indicated that the MLE has a better or similar performance than the others.
|
Page generated in 0.051 seconds