• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 77
  • 23
  • 22
  • 7
  • 6
  • 5
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 191
  • 191
  • 35
  • 33
  • 24
  • 22
  • 21
  • 18
  • 18
  • 17
  • 16
  • 15
  • 15
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Mitochondrial DNA Polymerase IB: Functional Characterization of a Putative Drug Target for African Sleeping Sickness

Bruhn, David F 13 May 2011 (has links)
Trypanosoma brucei and related parasites are causative agents of severe diseases that affect global health and economy. T. brucei is responsible for sleeping sickness in humans (African trypanosomiasis) and a wasting disease in livestock. More than 100 years after T. brucei was identified as the etiological agent for sleeping sickness, available treatments remain inadequate, complicated by toxicity, lengthy and expensive administration regiments, and drug-resistance. There is clear need for the development of a new antitrypanosomal drugs. Due to the unique evolutionary position of these early diverging eukaryotes, trypanosomes posses a number of biological properties unparalleled in other organisms, including humans, which could prove valuable for new drug targets. One of the most distinctive properties of trypanosomes is their mitochondrial DNA, called kinetoplast DNA (kDNA). kDNA is composed of over five thousand circular DNA molecules (minicircles and maxicircles) catenated into a topologically complex network. Replication of kDNA requires an elaborate topoisomerase-mediated release and reattachment mechanism for minicircle theta structure replication and at least five DNA polymerases. Three of these (POLIB, POLIC, and POLID) are related to bacterial DNA polymerase I and are required for kDNA maintenance and growth. Each polymerase appears to make a specialized contribution to kDNA replication. The research described in this dissertation is a significant contribution to the field of kDNA replication and the advancement of kDNA replication proteins as putative drug targets for sleeping sickness. Functional characterization of POLIB indicated that it participates in minicircle replication but is likely not the only polymerase contributing to this process. Gene silencing of POLIB partially blocked minicircle replication and led to the production of a previously unidentified free minicircle species, fraction U. Characterization of fraction U confirmed its identity as a population of dimeric minicircles with non-uniform linking numbers. Fraction U was not produced in response to silencing numerous other previously studied kDNA replication proteins but, as we demonstrated here, is also produced in response to POLID silencing. This common phenotype led us to hypothesize that POLIB and POLID both participate in minicircle replication. Simultaneously silencing both polymerases completely blocked minicircle replication, supporting a model of minicircle replication requiring both POLIB and POLID. Finally, we demonstrate that disease-causing trypanosomes require kDNA and the kDNA replication proteins POLIB, POLIC, and POLID. These data provide novel insights into the fascinating mechanism of kDNA replication and support the pursuit of kDNA replication proteins as novel drug targets for combating African trypanosomiasis.
162

Function of Telomere Protein RAP1 and Telomeric Transcript in Antigenic Variation in Trypanosoma Brucei

Nanavaty, Vishal P. January 2016 (has links)
No description available.
163

Semi-Synthetic Analogues of Cryptolepine as a Potential Source of Sustainable Drugs for the Treatment of Malaria, Human African Trypanosomiasis and Cancer

Abacha, Yabalu Z., Forkuo, A.D., Gbedema, S.Y., Mittal, N., Ottilie, S., Rocamora, F., Winzeler, E.A., van Schalkwyk, D.A., Kelly, J.M., Taylor, M.C., Reader, J., Birkholtz, L-M., Lisgarten, D.R., Cockcroft, J.K., Lisgarten, J.N., Palmer, R.A., Talbert, R.C., Shnyder, Steven, Wright, Colin W. 26 April 2022 (has links)
Yes / The prospect of eradicating malaria continues to be challenging in the face of increasing parasite resistance to antimalarial drugs so that novel antimalarials active against asexual, sexual, and liver-stage malaria parasites are urgently needed. In addition, new antimalarials need to be affordable and available to those most in need and, bearing in mind climate change, should ideally be sustainable. The West African climbing shrub Cryptolepis sanguinolenta is used traditionally for the treatment of malaria; its principal alkaloid, cryptolepine (1), has been shown to have antimalarial properties, and the synthetic analogue 2,7-dibromocryptolepine (2) is of interest as a lead toward new antimalarial agents. Cryptolepine (1) was isolated using a two-step Soxhlet extraction of C. sanguinolenta roots, followed by crystallization (yield 0.8% calculated as a base with respect to the dried roots). Semi-synthetic 7-bromo- (3), 7, 9-dibromo- (4), 7-iodo- (5), and 7, 9-dibromocryptolepine (6) were obtained in excellent yields by reaction of 1 with N-bromo- or N-iodosuccinimide in trifluoroacetic acid as a solvent. All compounds were active against Plasmodia in vitro, but 6 showed the most selective profile with respect to Hep G2 cells: P. falciparum (chloroquine-resistant strain K1), IC50 = 0.25 µM, SI = 113; late stage, gametocytes, IC50 = 2.2 µM, SI = 13; liver stage, P. berghei sporozoites IC50 = 6.13 µM, SI = 4.6. Compounds 3–6 were also active against the emerging zoonotic species P. knowlesi with 5 being the most potent (IC50 = 0.11 µM). In addition, 3–6 potently inhibited T. brucei in vitro at nM concentrations and good selectivity with 6 again being the most selective (IC50 = 59 nM, SI = 478). These compounds were also cytotoxic to wild-type ovarian cancer cells as well as adriamycin-resistant and, except for 5, cisplatin-resistant ovarian cancer cells. In an acute oral toxicity test in mice, 3–6 did not exhibit toxic effects at doses of up to 100 mg/kg/dose × 3 consecutive days. This study demonstrates that C. sanguinolenta may be utilized as a sustainable source of novel compounds that may lead to the development of novel agents for the treatment of malaria, African trypanosomiasis, and cancer.
164

DETERMINAÇÃO E ESTUDOS DE ESTRUTURAS DE COMPLEXOS ENZIMALIGANTES RELEVANTES À BIOLOGIA DAS PTERIDINAS EM PARASITAS: BASE PARA O DESENVOLVIMENTO RACIONAL DE DROGAS TERAPÊUTICAS CONTRA DOENÇA DO SONO

Martini, Viviane Paula 06 March 2007 (has links)
Made available in DSpace on 2017-07-24T19:38:12Z (GMT). No. of bitstreams: 1 VivianePaula.pdf: 3188050 bytes, checksum: 1b1ca9983470b6e6a3669cfd52a8c846 (MD5) Previous issue date: 2007-03-06 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The enzymes dihydrofolate reductase-thymidylate synthase (DHFR-TS) and pteridine reductase (PTR) are involved in the pterin/folate dependent metabolism; together they represent an important target for chemotherapy of parasitic leishmanias and trypanosomes. Xray crystallography was used to elucidate accurately the structure of the PTR1 enzyme from Trypanosoma brucei in complex with inhibitors which are analogous to the substrate. The ligands assayed for crystallization were the substrate folate and the inhibitors melamine, 6-thioguanine, WSG1012, WSG1034, WSG3065, WSG3066 and WSG3067. Of these, four yielded crystals with diffraction patterns sufficient for a complete dataset. WSG3065 (later revealing the lack of the ligand), WSG3066 and WSG3067 are three of the several structures presented in this work which came from the cited crystallization assays; added to these are the refined structures complexed with triamterene and cyromazine, proceeded from two other datasets already available. The datasets were processed with the programs Mosflm / Scala and Xds / Xscale, the structures were refined using the programs CNS and Refmac5 and validated with the programs Procheck, Whatcheck, Sfcheck and ValidationPDB. All refined structures belong to the space group P21 with unit cells around a = 79, b = 90, c = 82, b = 115, 4 monomers each of 268 residues per asymmetric unit and complex active sites. Besides the inhibiting ligands (except WSG3065) present in the structure, other ligands were found either near or outside the active site: dithiothreitol, glycerol, ethylene glycol, sodium and acetate ions. Analyses on the ligand positions and corresponding interactions with the protein were carried out to understand modes of inhibition and to guide the design or the discovery of new compounds which are potent, but selective to the parasitic enzyme, inhibitors. Thereby, initial docking studies were performed aiming at identifying new molecules or lead compounds with inhibitory capabilities. / As enzimas dihidrofolato redutase-timidilato sintase (DHFR-TS) e pteridina redutase (PTR) estão envolvidas no metabolismo pterina/folato dependente; juntas, representam um importante alvo para a quimioterapia de leishmanias e tripanossomas parasitas. A Cristalografia por Raios X foi utilizada para elucidar acuradamente a estrutura da enzima PTR1 de Trypanosoma brucei complexada com inibidores que são análogos ao substrato. Os ligantes ensaiados para cristalização foram o substrato folato e os inibidores melamina, 6-tioguanina, WSG1012, WSG1034, WSG3065, WSG3066 e WSG3067. Destes, quatro forneceram cristais com padrões de difração suficientes para um conjunto de dados completo. WSG3065 (mais tarde revelando ausência do ligante), WSG3066 e WSG3067 são três das estruturas apresentadas neste trabalho derivadas dos ensaios de cristalização citados; somadas a estas estão as estruturas refinadas dos complexos com triantereno e ciromazina, provenientes de dois outros conjuntos de dados anteriormente disponíveis. Os conjuntos de dados foram processados com os programas Mosflm / Scala e Xds / Xscale, as estruturas refinadas usando-se os programas CNS e Refmac5 e validadas com os programas Procheck, Whatcheck, Sfcheck e ValidationPDB. Todas as estruturas refinadas apresentaram grupo espacial P21 com celas unitárias aproximadas a = 79 = 90, c = 82 , b = 115, 4 monômeros de 268 resíduos cada por unidade assimétrica e sítios ativos complexos. Além dos ligantes inibidores presentes nas estruturas (exceto WSG3065), outros ligantes foram encontrados próximos ou fora do sítio ativo: ditiotreitol, glicerol, etilenoglicol, íons sódio e íons acetato. Análises das posições dos ligantes inibidores e correspondentes interações com a proteína foram realizadas a fim de se entender modos de inibição e, em particular, assistir ao planejamento ou à descoberta de novos compostos que sejam inibidores potentes, mas seletivos, para a enzima parasitária. Assim, estudos iniciais de atracagem (docking) foram realizados visando identificar novas moléculas ou arcabouços com capacidades inibitórias.
165

The metabolic consequences of gene knockout to pathway flux in trypanosomes / The metabolic consequences of gene knockout to pathway flux in trypanosomes

Fatarova, Maria 23 May 2017 (has links)
Le contexte de ce projet de thèse était d’approfondir la compréhension du métabolisme de Trypanosoma brucei. Les trypanosomes utilisent différents types de sources de carbone, des hydrates de carbone ainsi que des acides aminés pour alimenter leurs besoins énergétiques et biosynthétiques (conditions imitant réellement l'environnement dans la mouche tse-tse). Les différences de thioesters d'acyl-CoA sont encore inconnues dans ces conditions. Une telle élucidation est essentielle pour comprendre les adaptations métaboliques de l'organisme au cours de son cycle de vie. Cet objectif pourrait être complété par une combinaison d'analyses sensibles de divers groupes de métabolites, de délétions dirigées de gènes ou de régulations négatives. Ces derniers développements intègrent un flux de travail complet d'analyse des flux métaboliques par 13C à l’état-instationnaire. Ce flux de travail combine les méthodes existantes pour la collecte d'échantillons, la métabolomique quantitative basée sur MS et l'analyse isotopique d'acides organiques, d'acides aminés, de composés phosphorylés en plus des thioesters d'acyl Coenzyme A (acyl-CoAs), qui représentent un point central entre le métabolisme central du carbone et les voies anaboliques. Ce flux de travail a d'abord été évalué et validé sur l'organisme modèle Escherichia coli et a fourni de nouvelles idées sur son fonctionnement métabolique. Par la suite, ce flux de travail a ensuite été exploité pour étudier le métabolisme de T. brucei, pour lequel les résultats préliminaires sont décrits et discutés dans cette thèse. / Unusual metabolism of protozoan parasite causing deadly sleeping sickness, Trypanosoma brucei, has been enigmatic for many years. In the past decades, targeted genetic perturbations combined with metabolic analysis have advanced the view on complex compartmentalized metabolism of this organism, but acyl-CoA metabolism on the crossroad between catabolic and anabolic pathways, remains largely uncharacterized. Present work aims at clarifying mitochondrial operation and topology of acyl-CoA network of T. brucei, as well as its interconnections with the rest of metabolism. This has required the development of a complete framework for investigation of acyl-CoA metabolism in T. brucei integrating isotope labeling experiments with metabolite quantification. Sensitive LC-MS method for identification and quantification of acyl-CoAs based on high-resolution mass spectrometry (HRMS) with LTQ-OrbiTrap has been established and applied to investigate acyl-CoA metabolism in the protozoan parasite, as well as in the model organism in systems and synthetic biology, Escherichia coli. Complete workflow from cell cultivation, measurement of extracellular fluxes and analysis of isotopic profile which is result of enzyme-specific incorporation of isotopic tracer allowed modelling of metabolic network and calculation of metabolic fluxes. The entire workflow has been biologically validated and has clarified the link between acyl-CoA and central carbon metabolism in E. coli. The proposed framework has been adapted to T. brucei, for which several sample collection methods have been evaluated thoroughly. It was possible to extract, identify and quantify main acyl-CoA species produced from glucose catabolism. This optimised setup for acyl-CoA analysis will allow collection of data for NMR-based analysis of metabolic end products as well as collection of intracellular metabolites from same sample.
166

DNA precursor biosynthesis-allosteric regulation and medical applications

Rofougaran, Reza January 2008 (has links)
Ribonucleotide reductase (RNR) is a key enzyme for de novo dNTP biosynthesis. We have studied nucleotide-dependent oligomerization of the allosterically regulated mammalian RNR using a mass spectrometry–related technique called Gas-phase Electrophoretic Mobility Macromolecule Analysis (GEMMA). Our results showed that dATP and ATP induce the formation of an α6β2 protein complex. This complex can either be active or inactive depending on whether ATP or dATP is bound. In order to understand whether formation of the large complexes is a general feature in the class Ia RNRs, we compared the mammalian RNR to the E. coli enzyme. The E. coli protein is regarded a prototype for all class Ia RNRs. We found that the E. coli RNR cycles between an active α2β2 form (in the presence of ATP, dTTP or dGTP) and an inactive α4β4 form in the presence of dATP or a combination of ATP with dTTP/dGTP. The E. coli R1 mutant (H59A) which needs higher dATP concentrations to be inhibited than the wild-type enzyme had decreased ability to form these complexes. It remains to be discovered how the regulation functions in the mammalian enzyme where both the active and inactive forms are α6β2 complexes. An alternative way to produce dNTPs is via salvage biosynthesis where deoxyribonucleosides are taken up from outside the cell and phosphorylated by deoxyribonucleoside kinases. We have found that the pathogen Trypanosoma brucei, which causes African sleeping sickness, has a very efficient salvage of adenosine, deoxyadenosine and adenosine analogs such as adenine arabinoside (Ara-A). One of the conclusions made was that this nucleoside analog is phosphorylated by the T. brucei adenosine kinase and kills the parasite by causing nucleotide pool imbalances and by incorporation into nucleic acids. Ara-A-based therapies can hopefully be developed into new medicines against African sleeping sickness. Generally, the dNTPs produced from the de novo and salvage pathways can be imported into mitochondria and participate in mtDNA replication. The minimal mtDNA replisome contains DNA polymerase γA, DNA polymerase γB, helicase (TWINKLE) and the mitochondrial single-stranded DNA-binding protein (mtSSB). Here, it was demonstrated that the primase-related domain (N-terminal region) of the TWINKLE protein lacked primase activity and instead contributes to single-stranded DNA binding and DNA helicase activities. This region is not absolutely required for mitochondrial DNA replisome function but is needed for the formation of long DNA products.
167

Intermédiaires réactionnels de la fructose-1,6-biphosphate aldolase de Leishmania mexicana : comparaison avec l'enzyme de mammifère et recrutement de la région C-terminale

Lafrance-Vanasse, Julien January 2006 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
168

Salvage and de novo synthesis of nucleotides in Trypanosoma brucei and mammalian cells

Fijolek, Artur January 2008 (has links)
All living cells are dependent on nucleic acids for their survival. The genetic information stored in DNA is translated into functional proteins via a messenger molecule, the ribonucleic acid (RNA). Since DNA and RNA can be considered as polymers of nucleotides (NTPs), balanced pools of NTPs are crucial to nucleic acid synthesis and repair. The de novo reduction of ribonucleoside diphosphates (NDPs) to deoxyribonucleoside diphosphates (dNDPs), the precursors for DNA synthesis, is catalyzed by the enzyme ribonucleotide reductase (RNR). In cycling cells the dominant form of mammalian RNR consists of two proteins called R1 and R2. A proteasome-mediated degradation completely deprives postmitotic cells of R2 protein. The nonproliferating cells use instead a p53 inducible small RNR subunit, called p53R2 to synthesize dNTPs for mitochondrial DNA replication and DNA repair. To address the ongoing controversy regarding the localization and subsequently function and regulation of RNR subunits, the subcellular localization of all the mammalian RNR subunits during the cell cycle and after DNA damage was followed as a part of this thesis. Irrespective of the employed methodology, only a cytosolic localization could be observed leading to a conclusion that the dNTPs are synthesized in the cytosol and transported into the nucleus or mitochondria for DNA synthesis and repair. Thus, our data do not support the suggestion that nuclear translocation is a new additional mechanism regulating ribonucleotide reduction in mammalian cells. In an attempt to find a cure for African sleeping sickness, a lethal disease caused by a human pathogen, Trypanosoma brucei, nucleotide metabolism of the parasite was studied. The trypanosomes exhibit strikingly low CTP pools compared with mammalian cells and they also lack salvage of cytidine/cytosine making the parasite CTP synthetase a potential target for treatment of the disease. Following expression, purification and kinetic studies of the recombinant T. brucei CTP synthetase it was found that the enzyme has a higher Km value for UTP than the mammalian CTP synthetase. In combination with a lower UTP pool the high Km may account for the low CTP pool in trypanosomes. The activity of the trypanosome CTP synthetase was irreversibly inhibited by the glutamine analog acivicin, a drug extensively tested as an antitumor agent. Daily injections of acivicin to trypanosome-infected mice were sufficient to suppress the parasite infections. The drug was shown to be trypanocidal when added to cultured bloodstream T. brucei for four days at 1 uM concentration. Therefore, acivicin may qualify as a drug with “desirable” properties, i.e. cure within 7 days, according to the current Target Product Profiles of WHO and DNDi. Trypanosomes lack de novo purine biosynthesis and are therefore dependent on exogenous purines such as adenosine that is taken up from the blood by high-affinity transporters. We found that besides the cleavage-dependent pathway, where adenosine is converted to adenine by inosine-adenosine-guanosine-nucleoside hydrolase, T. brucei can also salvage adenosine by adenosine kinase (AK). The efficient adenosine transport combined with a high-affinity AK yields a strong salvage system in T. brucei, but on the other hand makes the parasites highly sensitive to adenosine analogs such as adenine arabinoside (Ara-A). The cleavage-resistant Ara-A was shown to be readily taken up by the parasites and phosphorylated by the TbAK-dependent pathway, inhibiting trypanosome proliferation and survival by incorporation into nucleic acids and by affecting nucleotide levels in the parasite.
169

Application of Computer-Aided Drug Discovery Methodologies Towards the Rational Design of Drugs Against Infectious Diseases

Athri, Prashanth 30 April 2008 (has links)
Computer-aided drug discovery involves the application of computer science and programming to solve chemical and biological problems. Specifically, the QSAR (Quantitative Structure Activity Relationships) methodology is used in drug development to provide a rational basis of drug synthesis, rather than a trial and error approach. Molecular dynamics (MD) studies focus on investigating the details of drug-target interactions to elucidate various biophysical characteristics of interest. Infectious diseases like Trypanosoma brucei rhodesiense (TBR) and P. falciparum (malaria) are responsible for millions of deaths annually around the globe. This necessitates an immediate need to design and develop new drugs that efficiently battle these diseases. As a part of the initiatives to improve drug efficacy QSAR studies accomplished the formulation of chemical hypothesis to assist development of drugs against TBR. Results show that CoMSIA 3D QSAR models, with a Pearson’s correlation coefficient of 0.95, predict a compound with meta nitrogens on the phenyl groups, in the combinatorial space based on a biphenyl-furan diamidine design template, to have higher activity against TBR relative to the existing compound set within the same space. Molecular dynamics study, conducted on a linear benzimidazole-biphenyl diamidine that has non-classical structural similarity to earlier known paradigms of minor groove binders, gave insights into the unique water mediated interactions between the DNA minor groove and this ligand. Earlier experiments suggested the interfacial water molecules near the terminal ends of the ligand to be responsible for the exceptianlly high binding constant of the ligand. Results from MD studies show two other modes of binding. The first conformation has a single water molecule with a residency time of 6ns (average) that is closer to the central part of the ligand, which stabilizes the structure in addition to the terminal water. The second conformation that was detected had the ligand completely away from the floor of the minor groove, and hydrogen bonded to the sugar oxygens.
170

Cloning of the promoter regions of Trypanosoma brucei and Trypanosoma congolense cysteine protease genes.

Dalasile, Thembile Lawrence. 23 December 2013 (has links)
Trypanosoma brucei and T. congolense are protozoan parasites that infect humans, domestic livestock and wildlife in Africa. These parasites undergo complex morphological and biochemical changes, during the various stages of their life cycle. These changes correlate with alterations in the levels of trypanosomal lysosomal cysteine proteases, suggesting a role for transcriptional regulation of the cysteine protease in these parasites. The mechanism of this regulation is not yet understood nor have the promoter regions of the cloned trypanosome cysteine protease genes been investigated. This study involved an attempt to clone the T. brucei and T. congolense DNA fragments containing the promoter regions as the initial step in the investigation of the control elements of the cysteine protease gene. Trypanosomes were isolated from infected rat blood employing a combination of the methods of isopicnic isolation on Percoll gradients and DEAE-cellulose anion exchange resin chromatography. Approximately 5 x 10⁹ viable trypanosome cells were isolated from the infected rat blood and chromosomal DNA (approximately 500 μg) was extracted by alkaline-lysis method. Trypanosome genomic libraries were initially constructed in Eschericia coli HB101 employing the positive selection vector pEcoR251. The Trypanosoma brucei pEcoR251 library contained 6 000 recombinants and the Trypanosoma congolense library contained 15 000 recombinants. Plasmid DNA was then extracted from pools of recombinants, employing the alkaline-lysis method, digested with EcoRl restriction endonuclease and resolved by agarose gel electrophoresis. After Southern hybridisation, the pEcoR251 libraries did not reveal any putative clones containing the fragment of interest when probed with both an oligonucleotide probe and the PCR generated dsDNA probe. Genomic libraries were then constructed in the phagemid pUC119. The T. brucei and T. congolense genomic libraries contained 33 000 and 27 000 recombinants respectively. Recombinants from the T. brucei and T. congolense libraries were pooled in lots of 400 and 300 respectively. Of the 80 T. brucei plasmid pools that were screened 30 pools contained fragments that hybridised with the probe whilst 12 pools from the 90 T. congolense library pools that were screened contained fragments that hybridised with the probe. Putative clones identified appeared to contain inserts, ranging between two and seven kb in size. A partial T. congolense library consisting of approximately 12 pools was screened by colony hybridisation for identification of individual clones and 76 putative clones were identified. After confirmation of these putative clones on a dot blot using a DIG-labelled dsDNA probe, a selection of 30 putative clones were subjected to Southern hybridisation using a DIG-labelled DNA probe. Following Southern hybridisation 23 putative clones were identified to contain DNA inserts of interest in the range of two to seven kb. Five clones, designated pCPC1, pCPC2, pCPC3, pCPC4 and pCPC5 were then selected for further restriction mapping. Clone pCPC4 contains a seven kb fragment of T. congolense genomic DNA. A partial T. brucei library consisting of approximately 30 pools was screened by colony hybridisation for the identification of individual putative clones. Although plasmid pools containing putative clones were identified repeatedly by Southern blotting and DNA/DNA hybridisation, it was not possible to identify individual putative clones following transformation into E. coli MV1184 and colony hybridisation. / Thesis (M.Sc.)-University of Natal, Pietermaritzburg, 1997.

Page generated in 0.0437 seconds