• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 8
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Studies on the immunobiology of trypanosoma lewisi infections in rats

Ndarathi, Charles W. Mathenge January 1988 (has links)
The immunological responses in hosts infected with Trypanosoma lewisi were examined during the course of infection and after recovery. Peak antibody levels coincided with the time of parasite elimination, but remained significantly elevated for over one year after the end of the infection The antigen repertoire recognized by antibodies demonstrated that some were revealed only by sera taken during the infection, and other antigens were revealed for the first time only by post-recovery sera. Immunomodulatory protective and suppressive factors were demonstrated in the plasma of irradiated, infected rats. These factors were identified as parasite-derived exoantigens which are shed in vivo and in vitro; exoantigens are complexes of proteins, lipids and polysaccharides and are membrane-surface coat associated, as shown by phase-partitioning and surface-labeling studies. The suppressive activity of the exoantigens was dose-dependent, probably mediated by a suppressor substance(s) produced by macrophages that subsequently inhibits production of interleukin 2 by T helper cells.
2

Studies on the immunobiology of trypanosoma lewisi infections in rats

Ndarathi, Charles W. Mathenge January 1988 (has links)
No description available.
3

Functional expression of Trypanosoma congolense pyroglutamyl peptidase type 1 and development of reverse genetics tools.

Mucache, Hermogenes Neves. 06 November 2013 (has links)
Trypanosoma congolense is a protozoan parasite transmitted by tsetse flies. It causes bovine trypanosomosis, the major disease for livestock in sub-Saharan Africa. Control methods include trypanocidal drugs and vector control, but none is fully satisfactory, due to resistance and environmental issues. A method that would have the greatest impact on controlling the disease is vaccination. However, development of a conventional vaccine has been hampered by the mechanism of antigenic variation, which allows the parasite to evade the host’s immune system. An alternative strategy in vaccine design is to target the bioactive compounds released by dead and dying trypanosomes. This approach is termed ‘‘anti-disease’’, and does not affect the survival of the parasite but targets the pathogenic factors released by the trypanosomes. The development of a successful anti-disease vaccine necessitates knowledge of all pathogenic factors involved in the disease process. Several macromolecules, primarily peptidases, have been implicated in the pathogenesis of trypanosomosis. Pyroglutamyl peptidase type I (PGP) was shown to be involved in abnormal degradation of thyrotropin- and gonadotropin-releasing hormones in rodents infected with T. brucei, but to date no data are available on the T. congolense PGP. Molecular cloning and expression in E. coli of the coding sequence of T. congolense PGP, as well as the enzymatic characterisation of the recombinant protein, are reported here, completed by the development of reverse genetics tools for studies of gene function. A 678 bp PCR fragment covering the complete open reading frame of PGP was cloned and sequenced. The deduced amino acid sequence showed 52% and 29% identity with the T. brucei and Leishmania major enzymes respectively. The catalytic residues Glu, Cys and His described in Bacilus amyloliquefaciens PGP are conserved in the T. congolense sequence. PGP was expressed in bacterial systems as a soluble active, 26 kDa enzyme. The recombinant enzyme showed activity specific for the fluorescent substrate pGlu-AMC, with a kcat/Km of 1.11 s-1μM. PGP showed activity in the pH 6.5-10 range, with maximal activity at pH 9.0. The enzyme was strongly inhibited by sulfhydryl-blocking reagents such as iodoacetic acid and iodoacetamide with a kass of 125 M-1 s-1 and 177 M-1 s-1 respectively. Antibodies raised in chickens against the recombinant enzyme allowed the detection of native PGP in both procyclic and bloodstream T. congolense developmental stages, and displayed complete inhibition of the enzyme in vitro at physiological concentrations. To get insight into the role of PGP in parasite biology and trypanosomosis progression, two types of vectors for reverse genetics studies were developed. For RNA interference, a 400 bp 3′ end segment of the PGP open reading frame was cloned into the plasmid p2T7Ti, that will allow PGP gene down-regulation upon integration into the genome of an engineered tetracycline-inducible strain such as TRUM:29-13. For gene knock-out, several rounds of molecular engineering were carried-out in order to create two plasmid vectors, pGL1184-based (blasticidin resistance) and pGL1217-based (neomycin resistance), each bearing 200 bp-long regions at the 5′ and 3′ ends of the PGP open reading frame. In subsequent studies, taking advantage of the recent advances in culture and transformation of T. congolense, these plasmids will allow the creation of single and double knock-out mutants of PGP. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2012.
4

Antibody-mediated inhibition of proteases of African trypanosomes.

Huson, Laura. 21 October 2013 (has links)
The protozoan parasites Trypanosoma congolense and T. vivax cause trypanosomosis in cattle. The major lysosomal cysteine proteinase of T. congolense, congopain, may contribute to pathogenesis of the disease, and antibody-mediated inhibition of this enzyme may contribute to mechanisms of trypanotolerance. Oligopeptidase B, a trypanosomal serine peptidase, is also a potential virulence factor in African trypanosomes because it is released into the host circulation by dead or dying parasites, where it retains catalytic activity due to the enzyme's insensitivity to serum protease inhibitors. The vaccine potential of the catalytic domain of congopain, C2, and oligopeptidase B complexed with 0'2-macroglobulin (0'2M) was evaluated by producing antibodies in rabbits. Inhibition of congopain and oligopeptidase B activity by these antibodies was assessed. The oligopeptidase B open reading frame from T. congolense and T. vivax was cloned and expressed in Escherichia coli, from which active recombinant enzymes were purified. These recombinant enzymes exhibited trypsin-like specificity for peptide substrates, cleaving on the carboxy side of basic amino acid residues such as arginine and lysine. Enzymes were found to be optimally active between pH 8 and 10, optimally stable at pH 6, and showed activation by reducing agents and sensitivity to ionic strength. The enzymes showed typical oligopeptidase B-like inhibitor profiles, except that they were not inhibited by thiol sensitive inhibitors such as iodoacetamide and Nethylmaleimide. High yields of bovine and rabbit 0'2M were isolated by a three-step procedure of fractionation by PEG 6000, and zinc chelate and Sephacryl S-300 HR chromatography. Congopain, its catalytic domain C2, papain and cathepsin L all cleaved the bait region of bovine 0'2M and became trapped inside the 0'2M molecule, where their activity against large molecular weight substrates was inhibited. C2 could thus be complexed with 0'2M directly or used to form C2-0'2M-oligopeptidaseB complexes for immunisation purposes. iv The catalytic domain of congopain, C2, was used to immunise rabbits either without adjuvant, as a water-in-oil emulsion with Freund's adjuvant, or in a complex with either bovine or rabbit U2M. Freund's adjuvant elicited the highest anti-C2 antibody response. However, the greatest inhibition, 65%, of C2 activity against Z-Phe-Arg-AMC was obtained with antibodies produced by rabbits receiving C2-U2Mcomplexes. In a second study, C2 and oligopeptidase B were used to immunise rabbits , either in alum, or complexed to bovine U2M. Anti-C2 antibody levels were highest in rabbits immunised with the free proteins in alum, whereas anti-oligopeptidase B antibody levels were comparable for each adjuvant system. Anti-oligopeptidase antibodies produced with alum gave 100% inhibition of oligopeptidase B activity. In contrast, antibodies produced against C2-u2M-oligopeptidase B complexes had little effect on oligopeptidase B activity. However, these antibodies inhibited 55% of C2 activity. Alum was a slightly less efficient adjuvant for C2 and 50% inhibition of C2 activity was observed. It appeared that immunisation of rabbits with C2 complexed to U2M resulted in the production of antibodies that were better able to neutralise the proteolytic activity of C2 and congopain in vitro than that with conventional adjuvants . The immunisation of C2 complexed to bovine u2-macroglobulin therefore has the potential to neutralise parasite congopain in vivo, and may contribute to an anti-disease vaccine against African trypanosomosis. Complexation of oligopeptidase B to u2M offers no benefit, since antibodies produced against this complex are not able to inhibit the activity of oligopeptidase B. Immunisation with oligopeptidase B in alum is sufficient to produce efficient enzyme-inhibiting antibodies in the context of an anti-disease vaccine against African trypanosomosis. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2006.
5

Studying trypanosomal peptidase antigen targets for the diagnosis of animal African trypanosomiasis.

Eyssen, Lauren Elizabeth-Ann. 09 September 2014 (has links)
The lack of a vaccine candidate due to antigenic variation by trypanosomal parasites, the causative agents of human and animal African trypanosomiasis, requires the disease to be controlled by surveillance, diagnosis and appropriate treatment schedules. Due to the non-specific symptoms along with the toxicity and side effects of the current trypanocides, diagnosis needs to be accurate, cost effective and applicable to active case finding in mostly rural settings. Trypanosomal proteases have been identified as virulence factors as they are essential to the parasites‟ survival. Here the diagnostic potential of previously described virulence factors, oligopeptidase B (OPB), pyroglutamyl peptidase (PGP) and the full length and catalytic domain of the cathepsin L-like peptidases (CATLFL and CATL respectively) from T. congolense (Tc) as well as OPB and CATL from T. vivax (Tv), was determined. These antigens were recombinantly expressed, purified and used to generate antibodies in chickens. The purified recombinant antigens were tested in an inhibition and indirect ELISA format using two separate blinded serum panels consisting of sera from non-infected and experimentally infected cattle, one each for T. congolense and for T. vivax. The tested sera were diluted 1:10 for the TcCATLFL, TcCATL antigens whilst the TvCATL antigen used a 1:100 serum dilution. The TcCATLFL, TcCATL and TvCATL antigens had the highest diagnostic potential in the indirect ELISA format with a 90.91, 92.21% accuracy at the second cut-off and a 77.22% accuracy at the third cut-off along with 0.8084, 0.7785 and 0.8813 area under curve (AUC) values respectively. These antigens show potential for development of lateral flow tests to detect T. congolense and T. vivax infections in cattle. The recently discovered metacaspases (MCAs) have been implicated in caspase-like activity and differentiation in T. b. brucei, T. cruzi and L. major and are considered to be virulence factors. The putative metacaspase 5 gene from T. congolense (TcMCA5) was successfully cloned, expressed within inclusion bodies, resolubilised and refolded using immobilised metal affinity chromatography. Recombinant TcMCA5 was successfully refolded as evident by the hydrolysis of the synthetic peptide substrate, Z-Gly-Gly-Arg-AMC. Autocatalytic processing was observed within the inclusion bodies and the products were purified along with the full length recombinant protein. Anti-TcMCA5 IgY antibodies, raised in chickens, were able to detect the native TcMCA5 along with the autocatalytic processed products within the lysate of the procyclic T. congolense (strain IL 3000) parasites. The diagnostic potential of TcMCA5 still requires verification. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2013.
6

Recombinant expression and evaluation of a- and b- tubulin from Trypanosoma congolense as vaccine candidates for African trypanosomiasis.

Bartlett, Cara-Lesley. January 2010 (has links)
African trypanosomiasis is caused by protozoan parasites known as trypanosomes, which are transmitted by the tsetse fly, affecting both humans and animals. Trypanosoma congolense is one of the main trypanosome species affecting cattle and causes the disease known as nagana. Control of animal African trypanosomiasis currently relies on chemotherapy and vector control methods, neither of which has proven satisfactory. An effective vaccine against trypanosomiasis would be the most cost effective solution to control the disease; however, due to the phenomenon of antigenic variation, intrinsic to the parasite’s outer coat of variable surface glycoprotein, this has not yet been achieved. Recent vaccine efforts have been centred on identification of invariant parasite antigens for use as vaccine candidates. Trypanosome cytoskeleton components have in recent years been shown to be capable of providing a protective immune response against trypanosome infection. These include tubulin proteins, which form the main components of the cytoskeleton, as well as microtubule associated proteins (MAPs) and paraflagellar rod proteins. In the present study α- and β-tubulin from T. congolense were recombinantly expressed and their immuno-protective potential in mice assessed. Amplification of both α- and β-tubulin ORFs from T. congolense genomic DNA was followed by cloning of the amplicons into the T-vector pTZ57R/T, and thereafter sub-cloning into the bacterial expression vector, pET238a and the yeast expression vector pPICZαA28. Only the α-tubulin amplicon was successfully sub-cloned into pICZAαA28; however, no protein expression was achieved upon transfection of the methylotrophic yeast, Pichia pastoris, with this construct. Subcloning of both α- and β-tubulin inserts into pET28a was successful. Expression of recombinant α- and β-tubulin as fusion proteins with a histidine tag, both at a size of 55 kDa, was achieved in Escherichia coli host BL21 (DE3). Recombinant proteins were successfully purified using nickel chelate chromatography under denaturing conditions. Refolding was first attempted by dilution of purified denatured proteins in a refolding buffer followed by reconcentration, but was largely unsuccessful. A second, more successful refolding method was performed wherein denatured proteins were refolded by application of a decreasing gradient of urea, while bound to a nickel chelate column. Native tubulin from cultured T.congolense procyclics was successfully purified and renatured using a polymerisation/depolymerisation method for use as a control for immunisation. Mice were immunised separately with refolded recombinant α- and β-tubulin, native tubulin or an irrelevant protein VP4AA expressed in the same way as the tubulins. ELISA analysis confirmed the production of antibodies against each protein. Parasitaemia developed in all mice following challenge with T. congolense. Only the group immunised with β-tubulin recorded no deaths during the monitoring period despite the presence of parasitaemia, with 60% of mice immunised with α-tubulin or VP4AA and the no antigen control and no mice from the native tubulin immunised group surviving. The results showed that partial protection against trypanosomiasis caused by T. congolense infection was achieved in the group immunised with β-tubulin and suggest that β-tubulin may have vaccine potential. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2010.
7

Structural studies aimed at improving the antigenicity of congopain.

Ndlovu, Hlumani Humphrey. January 2009 (has links)
African animal trypanosomosis or nagana is a tsetse fly-transmitted disease, caused by Trypanosoma congolense, T. vivax and to a lesser extent T. brucei brucei. The disease causes major losses in revenue in many livestock-producing African countries. The available control methods, including chemotherapeutic drugs and insecticidal spraying, have become environmentally unacceptable. Antigenic variation displayed by the parasites has hindered vaccine development efforts. In this context, rather than focusing solely on the parasite itself, efforts in vaccine development have shifted towards targeting pathogenic factors released by the parasites during infection. Congopain, the major cysteine protease of T. congolense, has been shown to act as a pathogenic factor in the disease process. Analysis of the immune response of trypano-tolerant cattle revealed that these animals have the ability to control congopain activity in vivo. Therefore, congopain is an attractive vaccine candidate. To test the protective potential of congopain, immunisation studies had been conducted in cattle using the baculovirus-expressed catalytic domain of congopain (C2) in RWL, a saponin-based proprietary adjuvant from SmithKline-Beecham. Immunised animals were partially protected against a disease caused by an infection with T.congolense. Unfortunately, subsequent attempts to reproduce these results were disappointing. It was hypothesised that this failure could be due to the different expression system (P. pastoris) used to produce the antigen (C2), or the different adjuvant, ISA206 (Seppic), used, thus hinting towards an epitope presentation problem. Congopain had been shown to dimerise at physiological pH in vitro. Sera from trypano-tolerant cattle preferentially recognised the dimer conformation, advocating for protective epitopes to be dimer associated. For that reason, the present study aimed at improving the antigenicity of congopain through firstly, the elucidation of the protective epitopes associated with the dimer, secondly, the determination of the 3-D structure of the protease in order to map protective epitopes to later design mimotopes, and thirdly improve the delivery of congopain to the immune cells while maintaining the conformation of the protease by using a molecular adjuvant, BiP. A dimerisation model was proposed, identifying the amino acid residues forming the dimerisation motif of congopain. In the present study, particular amino acid residues located in the dimerisation motif were mutated by PCR-based site-directed mutagenesis to generate mutants with different dimerisation capabilities. The congopain mutants were expressed in yeast and their dimerisation capability was assessed by PhastGel® SDS-PAGE. The mutations altered both the electrophoretic mobility of the mutants and their enzymatic characteristics compared to wild-type congopain. This advocated for the involvement of these amino acid residues in the dimerisation process, although they seem not to be the only partakers. Wild-type C2 and mutant forms of C2 were heterologously expressed in P. pastoris and purified to crystallisation purity levels. Crystallisation of these proteins is currently underway, but the results are still unknown. While awaiting the crystallisation results, in silico homology modelling was employed to gain insight into the 3-D structure, using cruzipain crystal structure as a template. The modelled 3-D structure of congopain followed the common framework of cathepsin L-like cysteine proteases. Due to time constraints and awaiting the crystal-derived 3-D structure, the 3-D model of congopain was not exploited to design mimotopes with the potential to provide protection against the disease. As it was shown that protective epitopes are likely to be dimer-specific, maintaining the native conformation of congopain is essential for stimulating a protective immune response in animals. Chemically formulated adjuvants usually contain high salt concentration, at acidic or basic pH, thus might change the conformation of the protease. Adjuvants capable of efficiently delivering the antigen to immune cells while maintaining the conformation of the protease were sought. Proteins belonging to the HSP70 family are natural adjuvants in higher eukaryotes. A protein belonging to the HSP70 family was previously identified in T. congolense lysates and is homologous to mammalian BiP. Congopain was genetically fused with T. congolense BiP in order to improve antigen delivery and production of congopain activity-inhibiting antibodies. The chimeric proteins were successfully expressed in both bacteria and yeasts. The low yields of recombinantly expressed chimeras in yeast and problems associated with renaturation and purification of bacteria-expressed chimeras prevented immunisation studies in mice. However, the groundwork was laid for producing BiP-congopain chimeras for use in an anti-disease vaccine for African trypanosomosis. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2009.
8

Via anti-inflamatória colinérgica e proteínas de fase aguda na tripanotolerância de coelhos infectados pelo Trypanosoma. evansi / Cholinergic anti-inflammatory pathway and acute phase proteins in trypanotolerance of rabbits infected by Trypanosoma evansi

Costa, Marcio Machado 26 April 2013 (has links)
Conselho Nacional de Desenvolvimento Científico e Tecnológico / Trypanosomiasis is a disease of worldwide distribution which in Brazil is called "mal das cadeiras", owing the clinical signs shown by horses, which are the major species affected. The disease is caused by the protozoan Trypanosoma evansi, characterized by clinical signs such as weight loss, pale mucous membranes, swelling of the eyelid and vulva. Rabbits have been reported as a resistant species to T. evansi, however, is not yet known how immune aspects, such as innate immune and cholinergic system, behave in this species, not even as this inflammations pathways influence in rabbits's trypanotolerance. Thus, the aim of this study was to investigate the inflammatory response and cholinergic anti-inflammatory pathway and its relation to trypanotolerance in rabbits infected with T. evansi. For this, twelve female adult New Zealand rabbits, weighing 3.6 4.5 kg were used in this study. The animals were divided into two groups, a control group and an infected group, both with six animals. The rabbits belonging to the infected group received, intraperitoneally, 0.5 ml of rat blood containing 108 parasites per animal, while the control group received physiological solution by the same route. The experimental period reached 118 days. Blood was collected on days 0, 2, 7, 12, 27, 42, 57, 87, 102, and 118, for to determine the cholinesterases, and days 0, 5, 20, 35, 65, 95 and 118, for to evaluate blood count, total protein, serum proteinogram, immunoglobulins and acute phase proteins. There was an increase in the activity of butyrylcholinesterase (BChE), at 7th day PI, and in the activity of acetylcholinesterase (AChE), in 27th day PI. Furthermore, the infected group showed an increase in total protein and the fractions alpha, beta and gamma globulins along of experimental period. The reduction in albumin and hematocrit were observed in precise periods of experimental infection, as well as the increase in immunoglobulin G. Infection with T. evansi stimulated the production of acute phase proteins, such as C-reactive protein, haptoglobin, α-2 macroglobulin, being observed increase in immunoglobulin M (IgM) throughout the experimental period (118 days post-infection). From these results, it is concluded that the cholinergic pathway had influence the inflammatory response, through the action of AChE and BChE in the regulation of concentrations of acetylcholine, resulting in increased concentrations of cytokines and, consequently, in the production phase protein acute. The increase in IgM, associated with increased C-reactive protein and haptoglobin, suggests the involvement of these proteins in host defense against flagellated, with possible participation in trypanotolerance of rabbits infected with T. evansi. / A tripanossomose é uma enfermidade de distribuição mundial que, no Brasil, é denominada mal das cadeiras , em função dos sinais clínicos apresentados pelos equinos, principal espécie afetada. A doença é causada pelo protozoário Trypanosoma evansi, sendo caracterizada por sinais clínicos como perda de peso, mucosas pálidas, edema de pálpebra e vulva. Coelhos têm sido relatados como uma espécie resistente ao T. evansi, contudo, ainda não se sabe de que modo aspectos imunitários, como a imunidade inata e o sistema colinérgico, comportam-se nessa espécie, nem mesmo como essas vias da inflamação influenciam a tripanotolerância de coelhos. Assim, o objetivo deste trabalho foi investigar a resposta inflamatória e a via anti-inflamatória colinérgica e sua relação na tripanotolerância em coelhos infectados experimentalmente pelo T. evansi. Para tanto, foram utilizados 12 coelhos adultos, fêmeas, da raça Nova Zelândia, com peso corporal entre 3,6 a 4,5 Kg, divididos em dois grupos, um grupo controle e um grupo infectado, ambos com seis animais. Os coelhos pertencentes ao grupo infectado receberam, pela via intraperitoneal, 0,5 mL de sangue de rato contendo 108 tripanossomas por animal, enquanto que o grupo controle recebeu, pela mesma via, solução fisiológica. O período experimental foi de 118 dias, sendo o sangue coletado nos dias 0, 2, 7, 12, 27, 42, 57, 87, 102, e 118, para determinar as colinesterases, e nos dias 0, 5, 20, 35, 65, 95 e 118, para avaliar hemograma, proteínas totais, proteinograma sérico, imunoglobulinas e proteínas de fase aguda. Foi observado aumento na atividade da butirilcolinesterase (BChE) no 7° dia PI e da atividade da acetilcolinesterase (AChE) no 27° dia PI. Além disso, o grupo infectado apresentou aumento nas proteínas totais, bem como nas frações alfa, beta e gama globulinas ao longo do período experimental. A redução na albumina e no hematócrito foram observados em períodos pontuais da infecção experimental, bem como o aumento na imunoglobulina G. A infecção pelo T. evansi estimulou a produção de proteínas de fase aguda como a proteína C-reativa, haptoglobina, α-2 macroglobulina, sendo observado um aumento na imunoglobulina M (IgM) em todo o período experimental (118 dias pós-infecção). A partir desses resultados, conclui-se que a via colinérgica pode ter influência na resposta inflamatória, através da ação da BChE e AChE na regulação das concentrações de acetilcolina, acarretando em aumento nas concentrações de citocinas e, consequentemente, na produção de proteínas de fase aguda. A elevação na IgM, relacionada ao aumento da proteína C-reativa e haptoglobina, sugere o envolvimento dessas proteínas na defesa do hospedeiro contra o flagelado, e, possivelmente, na tripanotolerância de coelhos infectados com T. evansi.

Page generated in 0.0655 seconds