171 |
The fabrication and evaluation of diamond cold cathodes for field emitter display applicationsFox, Neil Anthony January 1998 (has links)
No description available.
|
172 |
Effect of vapor velocity during condensation on horizontal finned tubesHopkins, Charles Louis III 12 1900 (has links)
Approved for public release; distribution is unlimited / Heat-transfer measurements were made for condensation of
R-113 and steam on a smooth tube and on three finned tubes
with rectangular shape fins. These tubes had a fin height
and width of 1.0 mm and spacings of 0.25, 1.5, and 4.0 mm
(tubes A, B, and C respectively) . Data were taken by
increasing the vapor velocity from 0.4 to 1.9 m/s for R-113
and 4.8 to 31.3 m/s for steam. For both fluids, the
improvement of the condensing heat-transfer coefficient with
vapor velocity was smaller for the finned tubes than for the
smooth tube. For R-113, the smooth tube experienced a 32
percent improvement with vapor velocity, where the finned
tubes (tubes A, B and C respectively) experienced
improvements of only 0, 5 and 10 percent. For steam, the
smooth tube experienced a 62 percent improvement, whereas
the finned tubes (tubes A, B, and C respectively)
experienced improvements of only 31, 11, and 9 percent.
These test results show that, although finned tubes can
provide significant heat transfer enhancement over smooth
tubes at low vapor velocities, the degree of enhancement
becomes smaller as vapor velocity increases. / CBT-8603582 (NSF) / http://archive.org/details/effectofvaporvel00hopk / National Science Foundation / Lieutenant Commander, United States Navy
|
173 |
LAVA TUBES AND COLLAPSE DEPRESSIONSHatheway, Allen W., Hatheway, Allen W. January 1971 (has links)
No description available.
|
174 |
Computational and experimental time domain, one dimensional models of air wave propagation in human airwaysClavica, Francesco January 2012 (has links)
The scientific literature on airflow in the respiratory system is usually associated with rigid ducts. Many studies have been conducted in the frequency domain to assess respiratory system mechanics. Time-domain analyses appear more independent from the hypotheses of periodicity, required by frequency analysis, providing data that are simpler to interpret since features can be easily associated to time. However, the complexity of the bronchial tree makes 3-D simulations too expensive computationally, limiting the analysis to few generations. 1-D modelling in space-time variables has been extensively applied to simulate blood pressure and flow waveforms in arteries, providing a good compromise between accuracy and computational cost. This work represents the first attempt to apply this formulation to study pulse waveforms in the human bronchial tree. Experiments have been carried out, in this work, to validate the model capabilities in modelling pressure and velocity waveforms when air pulses propagate in flexible tubes with different mechanical and geometrical properties. The experiments have shown that the arrival of reflected air waves occurs in correspondence of the theoretical timing once the wave speed is known. Reflected backward compression waves have generated an increase of pressure (P) and decrease of velocity (U) while expansion backward waves have produced a decrease of P and increase of U according to the linear analysis of wave reflections. The experiments have demonstrated also the capabilities of Wave intensity analysis (WIA), an analytical technique used to study wave propagation in cardiovascular system, in separating forward and backward components of pressure and velocity also for the air case. After validating the 1-D modelling in space and time variables, several models for human airways have been considered starting from simplified versions (bifurcation trachea- main bronchi, series of tubes) to more complex systems up to seven generations of bifurcations according to both symmetrical and asymmetrical models. Calculated pressures waveforms in trachea are shown to change accordingly to both peripheral resistance and compliance variations, suggesting a possible non-invasive assessment of peripheral conditions. A favourable comparison with typical pressure and flow waveforms from impulse oscillometry system, which has recently been introduced as a clinical diagnostic technique, is also shown. The results suggested that a deeper investigation of the mechanisms underlying air wave propagation in lungs could be a useful tool to better understand the differences between normal and pathologic conditions and how pathologies may affect the pattern of pressure and velocity waveforms.
|
175 |
Simulation of Combustion and Thermal Flow inside an Industrial BoilerSaripalli, Raja 08 May 2004 (has links)
Industrial boilers that produce steam or electric power represent a large capital investment as well as a crucial facility for overall plant operations. In real applications, the operation of the superheater for producing high-pressure, high-temperature steam may result in problems frequently caused by ruptured superheater tubes. To make the boiler more efficient, less emission and less prone to tube rupture problems, it is important to understand the combustion and thermal flow behaviors inside the boiler. This study performs a detailed simulation of combustion and thermal flow behaviors inside an industrial boiler. The simulations are conducted using the commercial CFD package FLUENT. The 3-D Navier-Stokes equations and five species transport equations are solved with the eddy-breakup combustion model. Calculation of NOx is performed after obtaining a converged flow, thermal and combustion solution. The results provide insight into the detailed thermal-flow and combustion in the boiler and showing possible reasons for superheater rupture
|
176 |
Orbital plasma welding of small bore tubesTazedakis, Athanassios S. January 1997 (has links)
This work was primarily motivated by the industrial need for control of problems associated with the Gas Tungsten Arc Welding (GTAW) of small bore titanium and austenitic stainless steel tubes. These include: pore creation and entrapment in the weld zone, and variability of the fusion zone geometry. The primary aim of this study was the development of a low current orbital plasma welding capability using a structured approach which could lead to defect minimisation. The methodology should also have the potential to be used in a number of different conditions, extending the use of plasma welding in both melt-in and keyhole modes for the orbital welding of small bore tubes. The project originally involved the modification of a totally enclosed orbital GTAW welding head for low current welding operations. It was established that for the current range required for small bore and small to medium thickness tubes, the use of a solid copper torch was sufficient to provide the required heat absorption. A stable arc was produced even for very low current values (down to 7A) while arc voltages were within the operating range of a standard GTA welding power source. Procedural (i.e. off line) control was adopted for identification and optimisation of welding parameters. Since no procedure was available for the proposed welds it was necessary to generate the parameters required for the production of consistent weld profiles. Simultaneously, an expert system has been developed for the determination of optimum process parameters based on empirical models, developed using statistical techniques. Parameter combinations were selected based on physical as well as statistical relevance, providing a measure of confidence when predicting the required weld bead output characteristics. The approach also indicates the influence of the major input parameters on weld bead geometry and defect formation, such as undercut. Two quality acceptance criteria were employed during this investigation, weld bead dimensional accuracy, and the type and seriousness of defects present (penetration / burn-through, porosity and undercut). Off line programming was utilised to control heat build up and to ensure welds were obtained with the desired geometry and minimal defect levels. The end result was the development of a prototype system for low current orbital plasma welding (in both melt-in and keyhole mode) of small bore tubes in a totally enclosed head. Tolerant procedures for low current orbital melt-in and particularly keyhole welding have been generated and a systematic methodology for the prediction and optimisation of welding procedures based on predetermined criteria has been developed.
|
177 |
The design and implementation of manufacturing resource planning at a plant producing continuous steam welded steel tubing and a variety of batch processed tube productsCerusini, Stefano 13 January 2015 (has links)
No description available.
|
178 |
Simulação computacional : um estudo de caso em uma empresa fabricante de câmaras de ar pneumáticasBoeira, Leandro do Amaral January 2008 (has links)
Atualmente o gerenciamento empresarial necessita de uma otimização nos recursos disponibilizados em busca de melhorias na produtividade e qualidade de produtos ou serviços, podendo tornar-se um diferencial para manter clientes. A simulação computacional pode contribuir com esta otimização, permitindo testar alterações para diferentes cenários propostos. Também pode auxiliar na compreensão das contribuições que estas alterações provocam nos processos existentes, para que se tenha um maior conhecimento de como os sistemas funcionam. Outra característica da simulação computacional é prever o comportamento futuro de sistemas, auxiliando no processo de tomada de decisão. O objetivo principal desta dissertação é a análise e avaliação da introdução da simulação computacional em uma empresa que fabrica câmaras pneumáticas de motocicletas, onde foi desenvolvido um estudo de caso. Para atingir este objetivo foram definidos os seguintes passos: identificação dos procedimentos recomendados pela literatura para estudos de simulação; execução destes procedimentos e análise do processo de implantação utilizado. Inicialmente o estudo de caso consistiu de reuniões com os gerentes para uma apresentação primária do estudo e definição do processo que poderia ser simulado. Então, foram executados os passos do método considerado e feita a análise do contato inicial da empresa com a ferramenta de simulação. Após, houve uma análise do aprendizado adquirido no processo de implantação. Finalmente, concluiu-se que o uso eficiente da técnica depende do envolvimento das pessoas conhecedoras e usuárias do processo simulado, também percebeu-se a necessidade de promover estudos futuros que aprofundem a investigação dos aspectos comportamentais envolvidos na introdução de uma nova ferramenta no ambiente fabril. / Currently, enterprise management requires an optimization of available resources aiming improvements in productivity and quality of products or services, becoming a differential for the customers. Computational simulation can contribute for such optimization, allowing testing changes for different scenarios proposed. Also it can help to understand their contributions in existing processes, to know better how systems operates. Another issue of computational simulation is predict the future behavior of systems, collaborating in the decision making process. The main goal of this dissertation is to analyze and evaluate the introduction of computational simulation in a company that produces rubber inner tubes. To reach this objective, the following steps were defined: identification of the literature recommended procedures in simulation studies; execution of these procedures; the analysis of the implantation process practiced. It was developed a case study in the rubber inner tubes company. The case study consisted initially in meetings with managers for an initial presentation of the study and definition of processes that could be simulated. Then, it was perform the steps of considered method and analysis of the first contact of the company with the simulation tool. Thus, there was learning about these deployment processes. Finally this dissertation concluded that the efficient use of the technique depends on the involvement of experts and users of the simulated process. This work raised need to promote further studies to deepen research on behavioral aspects involved in a introduction of a new tool in manufacturing environment.
|
179 |
Écoulements de ponts liquides dans des tubes capillaires : application aux maladies d'encombrement pulmonaire / Liquid plugs flow in capillary tube : application to pulmonary congestion diseasesMagniez, Juan Carmelo 10 July 2017 (has links)
Les maladies pulmonaires obstructives touchent aujourd'hui plusieurs millions de personnes dans le monde. Ces maladies se manifestent par l'accumulation d'un liquide appelé mucus dans les poumons, pouvant aboutir, lorsqu’elle est trop importante, à la formation de ponts liquides entravant la circulation de l’air. Les voies pulmonaires peuvent néanmoins se rouvrir via la rupture de ces ponts liquides. Ces réouvertures peuvent résulter du cycle respiratoire, d’écoulements plus violents provoqués par le mécanisme de toux ou encore nécessiter des séances de kinésithérapie respiratoire pour les malades atteints de bronchites chroniques ou de mucoviscidose. Dans cette thèse nous nous sommes intéressés à la rupture de ponts liquides engendrée par un cycle de respiration ou via un forçage unidirectionnel d’intensité suffisante. En particulier nous avons caractérisé expérimentalement et théoriquement les pressions critiques nécessaires pour rouvrir des voies obstruées. Nous avons aussi étudié les derniers instants de vie d’un pont liquide et mis en évidence à la fois expérimentalement et numériquement différents régimes de rupture. A forte vitesse, cette rupture est obtenue via l’atomisation du liquide, c’est à dire la formation de gouttelettes qui pourraient correspondre aux éjectas lors de la toux. Enfin nous nous sommes intéressés à un problème plus éloigné des poumons mais néanmoins fondamental en microfluidique : la dynamique de ponts liquides sur des surfaces partiellement mouillantes. Nous avons montré qu’au-dessus d’un certain seuil en vitesse, le déplacement d’un simple doigt de liquide à débit constant aboutit à la formation d’un train de bulles et de ponts liquides calibrés. / Obstructive pulmonary disease now affects several million people worldwide. These diseases are manifested by the accumulation of a liquid called mucus in the lungs which, when too large, can lead to the formation of liquid plugs which impede air circulation Pulmonary pathways can nevertheless reopen via the rupture of these liquid plugs. These reopenings may result from the respiratory cycle, more violent outflows caused by the cough mechanism or require respiratory physiotherapy sessions for patients with chronic bronchitis or cystic fibrosis. In this thesis we were interested in the rupture of liquid plugs generated by a breathing cycle or by a unidirectional forcing of sufficient intensity. In particular, we have experimentally and theoretically characterized the critical pressures necessary to reopen obstructed pathways. We also studied the last moments of life of a liquid plug and demonstrated both experimentally and numerically different regimes of rupture. At high velocity, this rupture is obtained via the atomization of the liquid, ie the formation of droplets that could correspond to the ejections during the cough. Finally, we were interested in a problem more distant from lungs but nevertheless fundamental in microfluidics: the dynamics of liquid plugs on partially wet surfaces. We have shown that above a certain velocity threshold, the displacement of a single liquid finger at constant flow results in the formation of a train of calibrated bubbles and liquid plugs.
|
180 |
Photocathodes à base de nanotubes de carbone sur substrats semi-conducteurs de type III-V. Application aux amplificateurs hyperfréquenceLe Sech, Nicolas 26 March 2010 (has links) (PDF)
Ce travail de thèse porte sur l'étude et le développement de sources électroniques à base de nanotubes de carbone modulées par voie optique appelées photocatodes. L'objectif de ces dernières est de les utiliser dans les tubes à ondes progressives, en remplacement des sources thermoïoniques actuelles, qui émettent un faisceau d'électrons continu. Ce nouveau type de dispositif permettrait de développer une nouvelle génération d'amplificateurs hyperfréquence large bande, plus compacts, plus légers et ayant un fort rendement pour les satellites de communication. Ces sources modulées reposent sur l'association de nanotubes de carbone avec des photodiodes P-i-Ns. Les photodiodes agissent comme des sources de courant tandis que les nanotubes jouent le rôle d'émetteurs d'électrons. Une modulation optique des photodiodes induit ainsi une émission modulée du faisceau d'électrons. Des études théoriques, couplées à des simulations, ont abouti à la compréhension détaillée du fonctionnement des photocathodes et à la connaissance de leurs performances. Par ailleurs, des résultats traitent de la fréquence de coupure qui limite le dispositif mais apportent néanmoins des perspectives d'améliorations. La fabrication des photocathodes a été menée à terme grâce à la mise au point de trois nouveaux procédés technologiques : une passivation des photodiodes InP-InGaAs-InP par une bi-couche de Slice/Nitrure de Silicium empêchant toute gravure ionique du substrat pendant la croissance des nanotubes. une technique de croissance de nanotubes de carbone à basse température (550 °C-600 °C) limitant la diffusion des dopants dans les matériaux semiconducteurs de type III-V. un recuit LASER des nanotubes de carbone améliorant leur qualité cristalline et diminuant leur résistivité. Enfin, les caractérisations du courant en fonction de la tension et les mesures fréquentielles des échantillons ont confirmé les résultats annoncés par la théorie. Une modulation du faisceau électronique contrôlée par voie optique a pu être mesurée jusqu'à 1.1 GHz, même si la fréquence de coupure actuelle se limite à 400 MHz. La réalisation des photocatodes a ainsi pu être démontrée. De surcroît, les résultats prometteurs aux vues des perspectives d'évolutions, permettent d'envisager une intégration proche des photocathodes dans un tube à ondes progressives.
|
Page generated in 0.0543 seconds