• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Preclinical evaluation and identification of potent tubulin and Hsp27 inhibitors as anticancer agents

Lama, Rati 13 May 2015 (has links)
No description available.
2

Engineering Novel Microbead Encapsulated Three-Dimensional Tumor and Stem Cell Models

January 2020 (has links)
abstract: Cellular assays are the backbone of biological studies - be it for tissue modeling, drug discovery, therapeutics, or diagnostics. Two-dimensional (2D) cell culture has been deployed for several decades to garner physiologically relevant information and predict data before the cost-intensive animal testing. Although 2D techniques have been valuable for cellular assays, they have a colossal limitation - they do not adequately consider the natural three-dimensional (3D) microenvironment of the cells. As a result, they sometimes provide misleading statistics. Therefore, it is important to develop a 3D model that predicts cellular behaviors and their interaction with neighboring cells and extracellular matrix (ECM) in a more realistic manner. In recent biomedical research, various platforms have been modeled to generate 3D prototypes of tissues, spheroids, in vitro that could allow the study of cellular responses resembling in vivo environments, such as matrices, scaffolds, and devices. But most of these platforms have drawbacks such as lack of spheroid size control, low yield, or high cost associated with them. On the other hand, Amikagel is a low cost, high-fidelity platform that can facilitate the convenient generation of tumor and stem cell spheroids. Furthermore, Amikabeads are aminoglycoside-derived hydrogel microbeads derived from the same monomers as Amikagel. They are a versatile platform with several chemical groups that can be exploited for encapsulating the spheroids and investigating the delivery of bioactive compounds to the cells. This thesis is focused on engineering novel 3D tumor and stem cell models generated on Amikagel and encapsulated in Amikabeads for proximal delivery of bioactive compounds and applications in regenerative medicine. / Dissertation/Thesis / Z-stacks of confocal images of spheroids encapsulated in Amikabeads (compilations of sections) / Masters Thesis Bioengineering 2020
3

L2pB1 cells are essential for the inhibition of 3D tumor spheroids by syngeneic peritoneal immune cells

Bootwala, Ali Habib 21 February 2019 (has links)
INTRODUCTION: Programmed Death Ligand 2 positive B1 cells (L2pB1) cells have a unique immunoglobulin repertoire that is poly-reactive to self-antigens and have previously been shown to have an essential role in autoimmunity. The active accumulation of L2pB1 cells inside tumors grown in vivo led us to hypothesize that this subpopulation of B1a cells may play a role in the immunosurveillance of cancer. Here, we report our investigation of the role of L2pB1 cells in the antitumor response using a three dimensional (3D) murine melanoma and colon cancer models. Our results showed that the depletion of L2pB1 cells rendered the loss of tumor inhibition effects of the syngeneic peritoneal immune cells. METHODS: Lymphocytes were collected from L2pB1 cell depleted and non-depleted peritoneal cavity washout (PCW) from an inducible knockout mouse model. Then tumor spheroids were incubated with PCW cells. Spheroid cross-sectional area (CSA) and volume were measured using a Celigo plate imager and Keyence fluorescence microscope. RESULTS: Tumor spheroid growth was significantly inhibited following incubation with syngeneic PCW but not with splenocytes. Depletion of L2pB1 significantly attenuated the tumor-inhibition effect and showed a negligible difference from the untreated control. This loss of tumor inhibition indicated that L2pB1 cells are essential for the tumor-inhibition effects of autologous peritoneal immune cells. CONCLUSIONS: These findings demonstrate the robust anti-tumor function of L2pB1 cells. In particular, peritoneal L2pB1 cells play an essential role in cancer inhibition. Future studies into the activation and antigen presentation pathways of L2pB1 cells could lead to novel immunotherapy of cancer.
4

SNAIL2 contributes to tumorigenicity and chemotherapy resistance in pancreatic cancer by regulating IGFBP2 / SNAIL2はIGFBP2の制御によって膵癌の腫瘍形成と化学療法抵抗性に寄与する

Masuo, Kenji 25 July 2022 (has links)
京都大学 / 新制・課程博士 / 博士(医学) / 甲第24136号 / 医博第4876号 / 新制||医||1060(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 藤田 恭之, 教授 波多野 悦朗, 教授 伊藤 貴浩 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
5

Développement d’un modèle humain de mélanome ex vivo basé sur l’implantation de sphéroïdes dans des explants de peau / Development of a human ex vivo melanoma model based on the implantation of tumor spheroids into skin explants

Jardet, Claire 11 October 2016 (has links)
Le mélanome métastatique est le cancer de la peau le plus agressif. Bien que son taux d’incidence soit inférieur à 1%, plus de 75% des décès associés à un cancer de la peau lui sont attribués. Au cours des dernières années, de nouvelles stratégies thérapeutiques ont permis d’améliorer la survie des patients. Cependant, des mécanismes de résistance à ces traitements se développent dans la majorité des cas, conduisant à une phase de rechute, et une survie à 5 ans inférieure à 20%. Des modèles d’étude expérimentaux sont nécessaires afin de comprendre les mécanismes impliqués dans l’apparition de ces résistances et développer de nouvelles stratégies thérapeutiques. Différents modèles in vitro sont actuellement utilisés pour le développement de drogues anti-tumorales, tels que celui du sphéroïde. Bien qu’il permette de reproduire l’organisation tridimensionnelle d’une tumeur, l’absence de microenvironnement tumoral empêche l’étude des interactions entre les cellules tumorales et celui-ci alors que ces facteurs jouent un rôle primordial dans la croissance tumorale et le développement de métastases. Dans ce contexte, mes travaux ont porté sur le développement et la caractérisation d’un modèle ex vivo de mélanome humain complet permettant l’étude de l’évolution d’une tumeur dans le tissu sain et l’évaluation de composés pharmacologiques. Les travaux réalisés ont tout d’abord conduit au développement d’un modèle de cancer cutané basé sur la combinaison d’un modèle de sphéroïde de lignée cellulaire de mélanome humain et du modèle de peau humaine ex vivo NativeSkin®, développé par la société Genoskin. Une procédure a été développée et validée pour permettre l’implantation reproductible d’un sphéroïde dans le derme des explants de peau. Parallèlement, j’ai développé une approche d’imagerie in situ par microscopie à feuille de lumière après transparisation des modèles. J’ai également développé une stratégie d’analyse d’images permettant la caractérisation quantitative de l'évolution du sphéroïde implanté en 3 dimensions et de suivre la dispersion des cellules du tumorales au sein de l’explant de peau. La caractérisation histologique du modèle implanté a révélé de façon très inattendue une perte progressive de l’intégrité du sphéroïde après implantation, associée à une diminution rapide de la prolifération des cellules le constituant et l’apoptose massive des cellules situées à sa périphérie. Ce phénomène a été observé de façon similaire lors de l’implantation de sphéroïdes produits à partir de différents types cellulaires. Afin de comprendre ces résultats, j’ai étudié l’implication potentielle de différents paramètres dans l’induction de la mortalité cellulaire observée tels que les conditions d’implantation, les facteurs synthétisés par le modèle et la contrainte mécanique exercée par le derme. Les résultats obtenus suggèrent que les facteurs sécrétés par les modèles après implantation du sphéroïde ont un effet antiprolifératif sur les sphéroïdes de mélanome et qu’ils induisent la mortalité des cellules situées à sa périphérie. Par ailleurs, l’application d’une contrainte mécanique extérieure sur les sphéroïdes de mélanome entraîne la perte de la cohésion de leur structure. Enfin, l’implantation de sphéroïdes dans le derme de biopsies de peau préalablement desséchées, induisant une perte de la viabilité cellulaire, a conduit à des résultats opposés à ceux observés avec de la peau normale : la structure des sphéroïdes reste cohésive et la prolifération des cellules est maintenue en périphérie du sphéroïde sans qu’aucune apoptose massive ne soit observée. L'ensemble de ces travaux semble suggérer que la mortalité du sphéroïde pourrait être, en partie, la conséquence d’une contrainte mécanique exercée par la peau sur le sphéroïde et/ou de facteurs produits par la peau durant sa culture. Ces données ouvrent des perspectives intéressantes dans le domaine de l’ingénierie tissulaire pour l’évaluation pharmacologique de composés thérapeutiques. / Malignant melanoma is the most aggressive form of skin cancer. Although it only occurs in less than 1%, it is responsible for more than 75% of skin cancer-related deaths. Furthermore, melanoma incidence has constantly increased during the last decades. New therapies such as targeted therapy and immunotherapy have emerged over the past years, significantly improving the overall survival rates of patients with advanced melanoma stages. However, resistance to those treatments develops in most cases, leading to relapse with a 5-years survival of those patients under 20%. Experimental models are needed in order to better understand the molecular events underlying these resistance mechanisms, and to develop new therapeutic strategies. MultiCellular Tumor spheroid is an increasingly recognized 3D in vitro model for pharmacological evaluation. Although this model accurately reproduces the 3D architecture, cell-cell interaction and cell heterogeneity found in microtumor in vivo, spheroids lack tumor-microenvironment interactions, which play a key role in tumor growth and metastasis development. In this context, the aim of my project was to develop and characterize a fully ex vivo human melanoma model for the study of tumor growth within the skin and the evaluation of antitumor drugs. Our approach relies on the combination of human melanoma cell lines grown in Multicellular Tumor Spheroids and the NativeSkin® model, an ex vivo human skin model produced by the biotechnology company Genoskin. Hence, I developed and validated a method to reproducibly implant one spheroid into the dermal compartment of skin explants cultured ex vivo. In parallel I have developed in situ imaging strategies based on light-sheet microscopy (SPIM, “Selective Plane Illumination Microscopy”) after optical clearing of the implanted skin biopsies. I also developed analytic methods to allow for the quantitative characterization of the spheroids evolution in 3 dimensions as well as tumor cells dispersal within the dermis of skin explants. Histological characterization of the implanted models over time revealed a progressive loss of the spheroids integrity after implantation associated with a rapid decrease in cell proliferation and massive apoptosis of the cells located in the peripheral layers. These results were shared by implanted spheroids made from different cell types. Further experiments were conducted in order to better understand these results and evaluate the impact of different parameters on the implanted microtumors viability such as the implantation procedure conditions, factors synthesized by the model after spheroid implantation and external mechanical stress. Results suggest that factors produced by the implanted models have an antiproliferative effect on melanoma spheroids and induce mortality in the peripheral layers of the spheroids. Moreover, results show that mechanical stress applied on melanoma spheroids induces loss of their cohesion. Finally, implantation of spheroids within the dermis of previously dessicated biopsies for 7 days, causing loss of skin cells viability, led to opposite results than in normal skin: spheroids maintain both a cohesive structure and proliferation in the peripheral cells without any massive apoptosis. Overall, this work led to the validation of a methodology to reproducibly implant spheroids into an ex vivo skin explant and the setup of an optical clearing technique necessary for in situ imaging of the implanted spheroid. Histological characterization unexpectedly revealed spheroids cells death following their implantation. Results suggest that this mortality could be partly related to mechanical stress exerted on the spheroids by the skin and/or by factors produced by the skin during culture. These data open new perspectives in the research field of tissue engineering for antitumoral pharmacology.
6

Evaluation der Interaktionen zwischen extrazellulärer Matrix und ausgewählten tumorassoziierten Proteinen mittels Nahinfrarot-Antikörpern / Evaluation of interactions between the extracellular matrix and selected tumor-associated proteins with near-infrared antibodies

Eckardt, Jan-Niklas 29 October 2020 (has links)
No description available.
7

Etude des mécanismes anti-cancéreux induits par milieux activés par jet de plasma froid : vers une nouvelle approche thérapeutique / Study of anti-tumoral mechanisms induced by cold plasma jet activated medium : towards a new therapeutic strategy

Chauvin, Julie 03 December 2018 (has links)
Les thérapies anticancéreuses basées sur des principes physiques (radiofréquences, ultrasons, laser, électroporation...) ont considérablement augmenté lors de la dernière décennie. Leurs objectifs sont de détruire directement les cellules cancéreuses, de favoriser l'entrée ciblée de molécules thérapeutiques ou encore de stimuler le système immunitaire du patient afin d'éliminer la tumeur. Le plasma froid suscite l'intérêt dans le domaine de l'oncologie grâce à sa capacité à générer des espèces réactives oxygénées (ROS) et azotées (RNS) qui peuvent être génotoxiques et cytotoxiques pour les cellules cancéreuses. Deux approches d'utilisation du plasma sont étudiées : soit l'exposition directe de cellules au jet plasma, soit l'exposition indirecte via l'utilisation d'un Milieu Activé par Plasma (PAM). Le PAM étant plus facile à délivrer par injection dans la tumeur, c'est cette approche qui est choisie lors de ces travaux. Le travail de thèse présenté consiste à étudier l'effet génotoxique et cytotoxique du PAM, obtenu après exposition du milieu au jet de plasma d'hélium, sur des tumeurs in vitro et in vivo. Pour les études in vitro, nous avons choisi d'utiliser un modèle 3D : le sphéroïde (MCTS - MultiCellular Tumor Spheroid). Ce modèle présente des caractéristiques proches du modèle in vivo grâce à son organisation en sphéroïde. Les MCTS présentent en effet des gradients de pénétration d'oxygène, de nutriments et de prolifération cellulaire. La première partie de la thèse concerne l'identification et la quantification des espèces générées dans le PAM. Les méthodes d'analyses utilisées sont la résonance paramagnétique électronique, la fluorimétrie, la colorimétrie, la chromatographie en phase liquide et la spectrométrie de masse. Ces analyses ont mis en évidence que la toxicité du PAM était due à plusieurs facteurs : d'un côté la génération de ROS et RNS mais aussi à la dégradation des nutriments pour les cellules contenues dans le milieu via par exemple l'oxydation et la nitrosylation des acides aminés. La deuxième partie est dédiée à l'étude des effets du PAM sur les MCTS HCT-116 (cancer du côlon).[...] / Cancer therapies based on physical principles (radiofrequency, ultrasound, laser, electroporation...) have considerably increased in the last decade. Their objectives are to directly destroy cancer cells, to favor the targeted entry of therapeutic molecules or to stimulate the patient's immune system in order to eliminate the tumor. Cold plasma still arouses interest in the field of oncology through its ability to generate reactive oxygen species (ROS) and nitrogen species (RNS) which can be genotoxic and cytotoxic for cancer cells. Two approaches to the use of plasma are studied: either direct exposure of cells to the plasma jet, or indirect exposure via the use of a Plasma Activated Medium (PAM). The PAM being easier to deliver by injection into the tumor, this approach was chosen in this work. The work presented consists in studying the genotoxic and cytotoxic effects of PAM resulting from exposure of the medium to the helium plasma jet on in vitro and in vivo tumors. For in vitro studies, we chose to use a 3D model: the spheroid (MCTS - MultiCellular Tumor Spheroid). This model has similar characteristics to the in vivo model thanks to its spheroidal organization. The spheroids have indeed gradients of oxygen penetration, nutrients and cell proliferation. The first part of the thesis concerns the identification and quantification of the species generated in PAM. The analytical methods used are paramagnetic electronic resonance, fluorimetry, colorimetry, liquid chromatography and mass spectrometry. These analyses revealed that the toxicity of PAM was due to several factors: on the one hand to the generation of ROS and RNS and on the other hand to the degradation of cell nutrients contained in the medium via, for example, the oxidation and nitrosylation of the amino acids. The second part is dedicated to the study of the effects of PAM on HCT-116 (colon cancer) spheroids[...]

Page generated in 0.0524 seconds