• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Functional analysis of mutations in isocitrate dehydrogenase involved in gliomagenesis

Krell, Daniel January 2014 (has links)
The main subject of my thesis is the investigation of mechanisms of glioma tumorigenesis associated with the recently identified mutations in isocitrate dehydrogenase. Gliomas account for 80% of primary brain cancers. They represent a diverse group of tumours, and are graded from I-IV based on histopathological features. Whilst grade I tumours may be curable with surgery alone, grade II and III gliomas inevitably progress to glioblastoma multiforme (GBM), which is highly resistant to current therapies and carries a very poor prognosis. Despite an improved understanding of the pathways and mechanisms involved in the development of glioma and its progression to grade IV disease, current and novel treatments have so far failed to significantly improve outcome. Isocitrate dehydrogenase (IDH) enzymes catalyse the oxidative decarboxylation of isocitrate to α-ketoglutarate (α-KG). Somatic mutations in genes encoding IDH1 and IDH2 were first identified in glioma and subsequently in acute myeloid leukemia and other solid tumours. These heterozygous point mutations occur at the arginine residue of the enzymes active site and cause both loss of normal enzyme function and gain-of-function, causing the reduction of α-KG to D-2-hydroxyglutarate (D-2HG), which accumulates. D-2HG may act as an oncometabolite through the inhibition of various α-KG dependent enzymes, stimulating angiogenesis, histone modifications and aberrant DNA methylation. Possibly, IDH1/2 mutations may also cause oncogenic effects through dysregulation of the tricarboxylic acid (TCA) cycle, or by increasing susceptibility to oxidative stress. The exact role of mutant IDH1/2 in tumorigenesis however remains unclear. In the work outlined in this thesis, I have demonstrated that the expression of mutant IDH1/2 in glioma cell lines leads to 2-HG accumultation and a reduction in α-KG production and results in HIF1α accumulation and a reduction in 5hmC production. Furthermore, the brain-specific expression of mutant Idh1 in mice also results in 2-HG accumulation and reduced α-KG production, whilst a reduction in 5hmC levels are also seen. This data appears to support the theory that IDH1/2 mutant activity results in the inhibition of α-KG dependent enzymes, either through the accumulation of 2-HG or due to a reduction in α-KG levels. The brain-specific expression of mutant Idh1 in mice also results in increased cellular proliferation and an increase in the expression of the neural stem cell marker, nestin. However gliomas do not develop, perhaps suggesting that additional mutations are required in conjunction with those occuring in IDH1/2 in order to initiate tumourigenesis. Clinically, IDH1/2 mutations may represent a novel therapeutic target in glioma and may also serve as useful diagnostic, prognostic and predictive biomarkers. However, a better understanding of the pathogenesis of mutant IDH is required, to enable effective IDH1/2 directed therapies to be developed in the future.
2

Towards a small molecule inhibitor of Lactate Dehydrogenase-A

Lomas, Andrew Philip January 2011 (has links)
Lactate Dehydrogenase-A (LDH-A) is up-regulated in a broad array of cancers and is associated with poor prognosis. Involved in the hypoxic response, LDH-A is a HIF-1 target and is responsible for the enzymatic reduction of pyruvate to lactate. This is important for several reasons, chiefly (1) the regeneration of NAD+ which feeds back into earlier glycolytic stages and (2) the depletion of intracellular pyruvate concentrations. High intracellular pyruvate is known to inhibit HDACs and is associated with increased apoptosis. LDH-A is also known to be controlled by oncogenes such as c-Myc suggesting an oncogenic role. Studies have shown that the knock-out of LDH-A reduces proliferation and tumourgenicity, and stimulates the mitochondria. This thesis therefore had three aims: firstly, to validate LDH-A inhibition and elucidate its full nature in terms of the implications for tumour survival; secondly, to ascertain the role of LDH-B in order to determine whether selectivity towards LDH-A would be a necessary feature of any small molecule; lastly, to recapitulate siRNA mediated LDH-A inhibition with small molecule inhibitors that had the potential for clinical application. The thesis examined both clinical data and a broad panel of cultured cancer cell types in order to select appropriate model in which to validate siRNA mediated inhibition of LDH-A and LDH-B. After it was demonstrated that LDH-A inhibition reduced the growth of cultured cells, a range of techniques were used to quantify this reduced growth in terms of cell death and changes in metabolism. Further to this, literature studies had proposed a role for LDH-B in maintaining lactate fuelled tumour growth; however, this thesis shows that in the cell lines studied, lactate-fuelled tumour growth was an LDH-A dependent phenomenon. Finally, a high throughput assay system was designed and validated and a library of small molecules was selected, synthesized, and screened in order to identify selective inhibitors of LDH-A.
3

Applications of Raman spectroscopy in radiation oncology: clinical instrumentation and radiation response signatures in tissue

Van Nest, Samantha J 31 August 2018 (has links)
Radiation therapy (RT) plays a crucial role in the management of cancer, however, current standards of care have yet to account for patient specific radiation sensitivity. Raman spectroscopy (RS) is a promising technique for radiobiological studies as a way to measure radiation responses in biological samples and could provide a method for monitoring and predicting radiation response in patients. The work in this dissertation gives way to significant advances in the implementation of RS for applications in radiation oncology. Specifically, instrumentation improvements for clinical implementation of RS were achieved through the investigation and development of Raman microfluidic systems. Unique magnesium fluoride based microfluidic systems were engineered and evaluated for applications in radiobiological studies. These systems were found to yield superior spectral quality over traditional microfluidic designs. Furthermore, in order to assert RS as a key technique for clinical monitoring and prediction of radiation responses, human non-small cell lung cancer (NSCLC) and breast adenocarcinoma tumour xenograft models were investigated for Raman signatures of radiation response. These studies found that RS can identify unique and distinct signatures of radiation response in tumours, that can be tracked over time. In particular, NSCLC tumours were found to have key radiation induced modulations in cell cycle and metabolic linked spectral features- including glycogen. Breast adenocarcinoma tumours were found to exhibit distinct fluctuations in spectral features linked to cell cycle as well as protein content. In the case of NSCLC, radiation response signatures were found to be linked to tumour regression and hypoxic status of the tumour- a key factor that dictates radiation resistance in the disease. This work provides the first application of RS to measure radiation response signatures of tumours irradiated \textit{in vivo}. These results show that RS is a versatile technique that can offer insight into radiation induced molecular changes that are unique to the type of cancer and can be monitored over several days following radiation exposure. Together with improved instrumentation for radiobiological studies using microfluidics, the work presented in this dissertation further emphasizes the key role RS can have in radiation oncology and personalization of RT. / Graduate / 2019-08-21
4

Molecular Rationale and Determinants of Sensitivity for Statin-Induced Apoptosis of Human Tumour Cells

Clendening, James William 07 March 2011 (has links)
The statin family of hydroxymethylglutaryl coenzyme A reductase (HMGCR) inhibitors, used to control hypercholesterolemia, triggers apoptosis of various human tumour cells. HMGCR is the rate-limiting enzyme of the mevalonate (MVA) pathway, a fundamental metabolic pathway required for the generation of a number of biochemical end-products including cholesterol and isoprenoids, but the contribution of the MVA pathway to human cancer remains largely unexplored. Furthermore, as only a subset of tumour cells has been shown to be highly responsive to statins, the identification of appropriate subsets of patients will be required to successfully advance these agents as anticancer therapeutics. To this end, there were two major aims to this work: 1) Elucidate a molecular rationale for the observed therapeutic index of statin-induced apoptosis in normal and tumour cells; 2) Identify molecular determinants of sensitivity for statin-induced apoptosis in human tumour cells. To address the first aim we demonstrated that dysregulation of the MVA pathway, achieved by ectopic expression of either full length HMGCR (HMGCR-FL) or its novel splice variant lacking exon 13 (HMGCR-D13), increases transformation. Ectopic HMGCR promotes growth of transformed and non-transformed cells under anchorage-independent conditions or as xenografts in immunocompromised mice. We also show that high mRNA levels of HMGCR and four out of five other MVA pathway genes correlate with poor prognosis in primary breast cancer, suggesting the MVA pathway may play a role in the etiology of human cancers. To address the second aim, we show that dysregulation of the MVA pathway is a key determinant of sensitivity to statin-induced apoptosis in multiple myeloma. In a panel of 17 distinct myeloma cell lines, half were sensitive to statin-induced apoptosis and the remainder were insensitive. Interestingly, in sensitive cells, the classic feedback response to statin exposure is lost, a feature we demonstrated could distinguish a subset of statin-sensitive primary myeloma cells. We further illustrated that statins are highly effective and well tolerated in an orthotopic model of myeloma using cells harboring a dysregulated MVA pathway. Taken together, this work provides a molecular rationale and determinants of sensitivity for statin-induced apoptosis of human tumour cells.
5

Molecular Rationale and Determinants of Sensitivity for Statin-Induced Apoptosis of Human Tumour Cells

Clendening, James William 07 March 2011 (has links)
The statin family of hydroxymethylglutaryl coenzyme A reductase (HMGCR) inhibitors, used to control hypercholesterolemia, triggers apoptosis of various human tumour cells. HMGCR is the rate-limiting enzyme of the mevalonate (MVA) pathway, a fundamental metabolic pathway required for the generation of a number of biochemical end-products including cholesterol and isoprenoids, but the contribution of the MVA pathway to human cancer remains largely unexplored. Furthermore, as only a subset of tumour cells has been shown to be highly responsive to statins, the identification of appropriate subsets of patients will be required to successfully advance these agents as anticancer therapeutics. To this end, there were two major aims to this work: 1) Elucidate a molecular rationale for the observed therapeutic index of statin-induced apoptosis in normal and tumour cells; 2) Identify molecular determinants of sensitivity for statin-induced apoptosis in human tumour cells. To address the first aim we demonstrated that dysregulation of the MVA pathway, achieved by ectopic expression of either full length HMGCR (HMGCR-FL) or its novel splice variant lacking exon 13 (HMGCR-D13), increases transformation. Ectopic HMGCR promotes growth of transformed and non-transformed cells under anchorage-independent conditions or as xenografts in immunocompromised mice. We also show that high mRNA levels of HMGCR and four out of five other MVA pathway genes correlate with poor prognosis in primary breast cancer, suggesting the MVA pathway may play a role in the etiology of human cancers. To address the second aim, we show that dysregulation of the MVA pathway is a key determinant of sensitivity to statin-induced apoptosis in multiple myeloma. In a panel of 17 distinct myeloma cell lines, half were sensitive to statin-induced apoptosis and the remainder were insensitive. Interestingly, in sensitive cells, the classic feedback response to statin exposure is lost, a feature we demonstrated could distinguish a subset of statin-sensitive primary myeloma cells. We further illustrated that statins are highly effective and well tolerated in an orthotopic model of myeloma using cells harboring a dysregulated MVA pathway. Taken together, this work provides a molecular rationale and determinants of sensitivity for statin-induced apoptosis of human tumour cells.
6

Mitochondrial modulators of hypoxia-related pathways in tumours

Snell, Cameron Edward January 2013 (has links)
The Lon protease is a mitochondrial matrix quality-control protease belonging to the family of AAA+ proteins (ATPases associated with many cellular activities). We had previously found Lon to be upregulated in lung tumours with a non-angiogenic phenotype in a microarray study comparing these to conventional angiogenic tumours. In this project I set out to investigate whether Lon had any role in modulating the hypoxic response of tumour cells. Using a novel monoclonal antibody against Lon, I found that upregulation of Lon was present in breast and lung tumours and that higher levels of Lon are correlated with shorter overall survival in breast cancer patients. Targeting Lon with siRNA and shRNA in tumour cell lines reduced the normoxic and hypoxic stabilisation of HIF-α subunits. This is mediated through a mechanism independent of the activity of HIF-prolyl hydroxylases and independent of any changes in mitochondrial transcription. I found that the pre-imported form of Lon could bind and chaperone VHL in the cytoplasm potentially modulating VHL activity. In cell lines and human tumours, I observed that the proline-hydroxylated form of HIF-1α is induced by hypoxia and the hydroxylated form of HIF-1α is associated with shorter overall survival in breast cancer patients. This observation supports the notion that higher levels of Lon is associated with poor survival by downregulating VHL leading to higher levels of hydroxylated HIF. Finally I show that targeting Lon in cell lines is able to inhibit growth in a cell-line dependent fashion and partially reverses the Warburg effect, increasing oxygen consumption and reducing lactate production. In conclusion, I have demonstrated the broad therapeutic potential of targeting the Lon protease in tumours and highlighted a mechanism of post-hydroxylation HIF-regulation that has not been previously recognised in VHL competent tumours.

Page generated in 0.0746 seconds