1 |
Investigation of a ceramic metal matrix composite functional surface layer manufactured using gas tungsten arc weldingHerbst, Stephan January 2014 (has links)
Wear resistant surfaces with high toughness and impact resistant properties are to be created to improve the life cycle cost of brake discs for trains. A potential solution to this industrial problem is to use an arc cladding process. This work describes the application of gas tungsten arc welding (GTAW) for a structural ceramic Metal Matrix Composite (MMC) on steel. The structure of the two ceramics examined indicates the possibility of development of a wear resistant surface, which would extend the life of the brake disc. Silicon Carbide (SiC) and Tungsten Carbide (WC) ceramics were studied to embed them in a steel matrix by an advanced GTAW method. WC particles penetrated the liquid weld pool and also partially dissolved in the steel matrix, whereas, SiC because of the physical properties never penetrated deeper into the weld pool but segregated on the surface. Successful embedding and bonding of WC led to the decision to exercise an in-depth analysis of the bonding between the WC particles and the matrix. Chemical analysis of the matrix revealed more WC dissolution as compared to particle form within the clad. It was observed that WC reinforcement particles built a strong chemical bond with the steel matrix. This was shown by electron backscatter diffraction (EBSD) analysis. The hard clad layer composed of WC reinforced steel matrix gave an matching friction coefficient to high-strength steel in cold wear conditions through Pin-on-Disc wear and friction testing. A prototype railway brake disc was created with the established GTAW parameters to find out the difficulties of producing industrial scale components.
|
2 |
Tool Life Characterization in Refill Friction Stir Spot WeldingBelnap, Ruth Guadalupe 20 June 2024 (has links) (PDF)
As light-weighting becomes a priority for the automotive industry, refill friction stir spot welding emerges with enormous potential to supplement or replace conventional spot joining processes. This thesis addresses the limitations of current tooling options by examining materials beyond steel for use in RFSSW. Contained herein is an analysis of weld quality as a function of tool material, a production evaluation of RFSSW using various tool materials, and an assessment of long-term performance of a tungsten carbide tool. Over the course of this research, tungsten carbide emerged as a viable candidate for long-lasting RFSSW tooling.
|
3 |
Effect of temperature on early stage adhesion during TiAlN sliding against Inconel 718 and Stainless steel 316L : High temperature tribologyAli, Ahsan January 2023 (has links)
High-performance materials such as stainless steels and nickel based super alloys are widely used in demanding applications where high mechanical and thermal properties are required. The applications of super alloys are mainly found in jet engines, power plants and gas turbines demanding high fatigue strength, corrosion and oxidation resistance as well as wear resistant properties. In order to use them, they go through various machining processes such as milling, turning, cutting, polishing etc. until the final product is achieved. Modern manufacturing industries employs various machining tools and technologies to improve the machining process of heat resistant super alloys. However, there are still challenges which needs to be addressed. Among them, adhesive wear of the machining tools is one of the main wear mechanism during the tribological interaction of tool and workpiece, preventing them to achieve the desired quality and surface finish of the end product. Moreover, it damages the tool reducing its lifecycle and in return, increasing the production cost. Among the cutting tools tungsten carbide (WC/Co) tools coated with TiAlN coating due to their good high temperature performance are extensively used. Nonetheless, these coatings still face issue like adhesive wear, abrasion, oxidation at higher temperature damaging the tools and subsequent machining. Therefore, it is imperative to understand the initiation mechanism of adhesive wear during the tribological interaction of super alloys and coated cutting tool material. In this research work, the tribological response of two coatings deposited by physical vapour deposition (PVD), having the composition Ti60Al40N and Ti40Al60N have been studied against two super alloys material, i.e. Inconel 718 and stainless steel 316L. A high temperature SRV (Schwingung (Oscillating), Reibung (Friction), Verschleiß (Wear)) reciprocation friction and wear test set up was employed to investigate the friction behaviour, wear rate and dominant wear mechanisms. For Ti60Al40N coating, the experimental results revealed that generally, friction increases in case of sliding against Inconel 718 up to 400 °C and drops at 760 °C. A high wear volume at room temperature and a decrease to a minimum at 760 °C has been observed for Inconel 718. On the other side, Stainless steel 316L (SS 316L) faces a continuous rise in friction coefficient with highest value at 760 °C during sliding against Ti60Al40N coating. Wear is highest at 400 °C for SS 316L pin. The worn surfaces shows that both workpiece materials experience increase in material transfer due to adhesive wear with rise in temperature. At 400 °C, adhesion is the primary wear mechanism for both workpiece materials. A further rise in temperature to 760 °C promotes the adhesive wear through oxides formation on both material surfaces. Similarly, Ti40Al60N coating shows the same friction behaviour with change in average steady state friction values for both material of Inconel 718 and SS 316L. Both workpiece materials responds in a similar way to wear volume loss, i.e. lowest at room temperature and highest at 760 °C. For Inconel 718, transfer of coating constituents on to the Inconel 718 pin surface was detected and associated with coating rupture and peeling, exacerbating with rise in temperature. Adhesion, abrasion, and oxidation are primary wear mechanisms at 400 °C and 760 °C. For SS 316L, coating transfer only happen at 400 °C. No damage of coating at 40 °C, a complete damage at 400 °C, and formation of dense porous oxides layers at 760 °C have been noticed. At 400 °C, adhesion, abrasion, and chipping while at 760 °C, adhesion, three body abrasion, ploughing and oxidation are the main wear mechanisms.
|
Page generated in 0.076 seconds