• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 21
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 66
  • 66
  • 17
  • 16
  • 15
  • 14
  • 13
  • 13
  • 13
  • 12
  • 12
  • 11
  • 11
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Near-Field Study of Multiple Interacting Jets : Confluent Jets

Ghahremanian, Shahriar January 2015 (has links)
This thesis deals with the near-field of confluent jets, which can be of interest in many engineering applications such as design of a ventilation supply device. The physical effect of interaction between multiple closely spaced jets is studied using experimental and numerical methods. The primary aim of this study is to explore a better understanding of flow and turbulence behavior of multiple interacting jets. The main goal is to gain an insight into the confluence of jets occurring in the near-field of multiple interacting jets. The array of multiple interacting jets is studied when they are placed on a flat and a curved surface. To obtain the boundary conditions at the nozzle exits of the confluent jets on a curved surface, the results of numerical prediction of a cylindrical air supply device using two turbulence models (realizable 𝑘 − 𝜖 and Reynolds stress model) are validated with hot-wire anemometry (HWA) near different nozzles discharge in the array. A single round jet is then studied to find the appropriate turbulence models for the prediction of the three-dimensional flow field and to gain an understanding of the effect of the boundary conditions predicted at the nozzle inlet. In comparison with HWA measurements, the turbulence models with low Reynolds correction (𝑘 − 𝜖 and shear stress transport [SST] 𝑘 − 𝜔) give reasonable flow predictions for the single round jet with the prescribed inlet boundary conditions, while the transition models (𝑘 − 𝑘l − 𝜔𝜔 and transition SST 𝑘 − 𝜔) are unable to predict the flow in the turbulent region. The results of numerical prediction (low Reynolds SST 𝑘 − 𝜔 model) using the prescribed inlet boundary conditions agree well with the HWA measurement in the nearfield of confluent jets on a curved surface, except in the merging region. Instantaneous velocity measurements are performed by laser Doppler anemometry (LDA) and particle image velocimetry (PIV) in two different configurations, a single row of parallel coplanar jets and an inline array of jets on a flat surface. The results of LDA and PIV are compared, which exhibit good agreement except near the nozzle exits. The streamwise velocity profile of the jets in the initial region shows a saddle back shape with attenuated turbulence in the core region and two off-centered narrow peaks. When confluent jets issue from an array of closely spaced nozzles, they may converge, merge, and combine after a certain distance downstream of the nozzle edge. The deflection plays a salient role for the multiple interacting jets (except in the single row configuration), where all the jets are converged towards the center of the array. The jet position, such as central, side and corner jets, significantly influences the development features of the jets, such as velocity decay and lateral displacement. The flow field of confluent jets exhibits asymmetrical distributions of Reynolds stresses around the axis of the jets and highly anisotropic turbulence. The velocity decays slower in the combined regio  of confluent jets than a single jet. Using the response surface methodology, the correlations between characteristic points (merging and combined points) and the statistically significant terms of the three design factors (inlet velocity, spacing between the nozzles and diameter of the nozzles) are determined for the single row of coplanar parallel jets. The computational parametric study of the single row configuration shows that spacing has the greatest impact on the near-field characteristics.
62

Modélisation thermo-aéraulique des écoulements d’air avec transfert de chaleur et de masse dans un milieu fermé et humide. Application à une piscine intérieure

Limane, Abdelhakim January 2017 (has links)
La piscine fait partie des établissements publics les plus fréquentés dans notre société. En effet, il ne s’agit pas uniquement d’un lieu de pratique d'activités physiques, mais également un espace de détente, de jeu, d’éducation et de lien familial. Il est de toute évidence essentiel, de fournir un environnement intérieur confortable et sain pour ses occupants. Cependant, en raison de sa dimension, son besoin excessif en énergie et la complexité des phénomènes physiques évoluant à l’intérieur, il est difficile de parvenir à un équilibre optimum entre : qualité de l’air intérieur, confort thermique des occupants et efficacité énergique du bâtiment. Il faut pour cela, parvenir à une description des mécanismes qui façonnent la structure de l’écoulement de l’air par une analyse profonde de ces phénomènes qui sont à l'origine des transferts de chaleur et de masse mis en jeu à l’intérieur. Ainsi, l’objectif visé de cette thèse est de présenter une étude numérique thermo aéraulique, par CFD en régime stationnaire et transitoire, qui permet d’évaluer le comportement dynamique, thermique et thermodynamique des différents phénomènes physiques qui évoluent à l’intérieur de la piscine intérieure semi-olympique de l’université Bishop’s (Sherbrooke, Canada) afin d’améliorer la qualité de l’air intérieur et le confort thermique ainsi que son rendement énergétique. Les simulations sont réalisées avec le logiciel libre OpenFOAM en utilisant une approche RANS. Une étude thermo-aéraulique par CFD a d’abord été réalisée sur une cavité rectangulaire avec plancher chauffé, afin d’appréhender les simulations thermo aérauliques. Cela a abouti à la détermination de la meilleure configuration d’aération pour une qualité de l’air et un confort thermique optimum. Plusieurs simulations CFD du flux d'air tridimensionnel avec transfert de chaleur et de masse ont été aussi effectuées ultérieurement pour la piscine, afin d’évaluer les effets des conditions climatiques extérieures et ceux des nageurs sur l'atmosphère intérieure. En adoptant plusieurs modèles de turbulence de type RANS, la comparaison des résultats obtenus avec les données expérimentales de référence a permis de valider le code OpenFOAM. Les données expérimentales ont été recueillies au préalable au sein de la piscine de l’Université Bishop’s à l’aide d’un dispositif conçu et adapté aux conditions internes propre à la piscine et qui est équipé de plusieurs capteurs pour la mesure de : température, humidité relative et vitesse. Enfin, une étude thermo-aéraulique de la piscine en régime turbulent transitoire pour une durée de 24 heures pour les jours typiques d'été et d'hiver a été réalisée afin de prédire l’évolution de la distribution des paramètres tels que la vitesse, la température et l'humidité relative. Une analyse statistique a permis de montrer que les conditions climatiques extérieures n'ont pas d'effet sur l'environnement interne de celle-ci. D’ailleurs, sa très bonne isolation thermique démontrée par un calcul détaillé des pertes thermiques à travers son enveloppe confirme ce constat. D’autre part, l’évaluation de la qualité de l'air intérieur et le confort thermique des occupants a révélé que ces derniers sont inacceptables. Suite auxquels, un ajustement des paramètres de conditionnement de l’air a été apporté pour fin d’amélioration. / Abstract : The swimming pool is one of the most popular public establishments in our society and is not just a place for physical activities but also a space for relaxation, play, education and family ties. It is therefore important to ensure a healthy and comfortable indoor environment for the occupants. However, given the size, energy requirement and complexity of the physical phenomena that take place within such space, it is difficult to achieve an optimum balance between interior air quality, thermal comfort of occupants and energy efficiency of the building. This requires a description of the mechanisms, which determine the structure of the airflow by a profound analysis of these phenomena, which are the origin of the heat and mass transfers involved inside such spaces. The objective of this thesis is to present a numerical thermo-ventilation study using CFD (computational fluid dynamic) in stationary and transient regime that allows to evaluate the dynamic, thermal and thermodynamic behaviors of the various phenomena that take place inside the semi-Olympic closed swimming pool at Bishop's University (Sherbrooke, Qc, Canada). The aim is to improve the indoor air quality and thermal comfort of occupants as well as its energy efficiency. The simulations are carried out using OpenFOAM (Open Field Operation and Manipulation) using a Reynolds-Averaged Navier-Stokes (RANS) approach. To do this, a CFD thermo-ventilation study was first carried out on a rectangular cavity with heated floor in order to understand the thermo-ventilation simulations. This has led to the determination of the best ventilation configuration for optimum air quality and thermal comfort. Several CFD simulations of the three-dimensional airflow with heat and mass transfer were also carried out later for the indoor swimming pool to evaluate the effects of outdoor climatic conditions and swimmers on the indoor atmosphere of the pool. By adopting several RANS turbulence models, the comparison of the results obtained with the experimental data allowed to validate the OpenFOAM code. The experimental data were collected in the pool at Bishop's University using a device designed and adapted to the pool’s internal conditions. The devise is equipped with several sensors to measure temperature, relative humidity and velocity. Finally, a thermo-ventilation study of the swimming pool in transient turbulent regime for a duration of 24 hours for typical days of summer and winter was conducted in order to predict the distribution of the various parameters such as velocity, temperature and relative humidity. A statistical analysis showed that the external climatic conditions have no effect on the internal environment of the swimming pool. Moreover, its good thermal insulation demonstrated by a detailed calculation of the thermal losses through building envelope confirms this observation. On the other hand, the evaluation of the indoor air quality and the thermal comfort of occupants revealed that the conditions inside the pool are unacceptable. After which, an adjustment of the air conditioning parameters was made for improvements.
63

Analýza inerčního odlučovače částic na vstupu vzduchu do turbovrtulového motoru / Study of Inertial Particle Separator in a typical turboprop engine

Skála, Adam January 2019 (has links)
This thesis focuses on ingestion of foreign objects into standard turboprop engine GE H80 situated in aircraft Let L-410 Turbolet. Aim of this study is to create methodology of numerical simulation of particle movement inside the engine, which could be used during design process of Inertial Particle Separator device. Thesis consists of backward-facing step benchmark study which validates used methodology. Second part describes flow field calculation and numerical setup. The last part is dedicated to particle tracking analysis. Simulated trajectories are visually investigated, and coordinates of particle impacts at 1st rotor of a compressor are correlated to position of real observed damage.
64

Effect of Changes in Flow Geometry, Rotation and High Heat Flux on Fluid Dynamics, Heat Transfer and Oxidation/Deposition of Jet Fuels

Jiang, Hua 12 May 2011 (has links)
No description available.
65

Numerical models for tidal turbine farms

Shives, Michael Robert 22 June 2017 (has links)
Anthropogenic climate change is approaching predicted tipping points and there is an urgent need to de-carbonize energy systems on a global scale. Generation technologies that do not emit greenhouse gas need to be rapidly deployed, and energy grids need to be updated to accommodate an intermittent fluctuating supply. Rapidly advancing battery technology, cost reduction of solar and wind power and other emerging generation technologies are making the needed changes technically and economically feasible. Extracting energy from fast-flowing tidal currents using turbines akin to those used in wind farms, offers a reliable and predictable source of GHG free energy. The tidal power industry has established the technical feasibility of tidal turbines, and is presently up-scaling deployments from single isolated units to large tidal farms containing many turbines. However there remains significant economic uncertainty in financing such projects, partially due to uncertainty in predicting the long-term energy yield. Since energy yield is used in calculating the project revenue, it is of critical importance. Predicting yield for a prospective farm has not received sufficient attention in the tidal power literature. this task has been the primary motivation for this thesis work, which focuses on establishing and validating simulation-based procedures to predict flows through large tidal farms with many turbines, including the back effects of the turbines. This is a challenging problem because large tidal farms may alter tidal flows on large scales, and the slow-moving wake downstream of each rotor influences the inflow to other rotors, influencing their performance and loading. Additionally, tidal flow variation on diurnal and monthly timescales requires long-duration analysis to obtain meaningful statistics that can be used for forecasting. This thesis presents a hybrid simulation method that uses 2D coastal flow simulations to predict tidal flows over long durations, including the influence of turbines, combined with higher-resolution 3D simulations to predict how wakes and local bathymetry influence the power of each turbine in a tidal farm. The two simulation types are coupled using a method of bins to reduce the computational cost within reasonable limits. The method can be used to compute detailed 3D flow fields, power and loading on each turbine in the farm, energy yield and the impact of the farm on tidal amplitude and phase. The method is demonstrated to be computationally tractable with modest high-performance computing resources and therefore are of immediate value for informing turbine placement, comparing turbine farm-layout cases and forecasting yield, and may be implemented in future automated layout optimization algorithms. / Graduate
66

A Ventilation Strategy Based on Confluent Jets : An Experimental and Numerical Study

Janbakhsh, Setareh January 2015 (has links)
This study presents air distribution systems that are based on confluent jets; this system can be of interest for the establishment of indoor environments, to fulfill the goals of indoor climate and energy-efficient usage. The main objective of this study is to provide deeper understanding of the flow field development of a supply device that is designed based on wall confluent jets and to investigate the ventilation performance by experimental and numerical methods. In this study, the supply device can be described as an array of round jets on a flat surface attached to a side wall. Multiple round jets that issue from supply device apertures are combined at a certain distance downstream from the device and behave as a united jet or so-called confluent jets. Multiple round jets that are generated from the supply device move downward and are attached to the wall at the primary region, due to the Coanda effect, and then they become wall confluent jets until the floor wall is reached. A wall jet in a secondary region is formed along the floor after the stagnation region. The characteristics of the flow field and the ventilation performance of conventional wall confluent jets and modified wall confluent jets supply devices are investigated experimentally in an office test room. The study of the modified wall confluent jets is intended to improve the efficiency of the conventional one while maintaining acceptable thermal comfort in an office environment. The results show that the modified wall confluent jets supply device can provide acceptable thermal comfort for the occupant with lower airflow rate compared to the conventional wall confluent jets supply device. Numerical predictions using three turbulence models (renormalization group (RNG k– ε), realizable (Re k– ε), and shear stress transport (SST k– ω) are evaluated by measurement results. The computational box and nozzle plate models are used to model the inlet boundary conditions of the nozzle device. In the isothermal study, the wall confluent jets in the primary region and the wall jet in the secondary region, when predicted by the three turbulence models, are in good agreement with the measurements. The non-isothermal validation studies show that the SST k– ω model is slightly better at predicting the wall confluent jets than the other two models. The SST k– ω model is used to investigate the effects of the nozzle diameter, number of nozzles, nozzle array configuration, and inlet discharge height on the ventilation performance of the proposed wall confluent jets supply device. The nozzle diameter and number of nozzles play important roles in determining the airflow pattern, temperature field, and draught distribution. Increased temperature stratification and less draught distribution are achieved by increasing the nozzle diameter and number of nozzles. The supply device with smaller nozzle diameters and fewer nozzles yields rather uniform temperature distribution due to the dominant effect of mixing. The flow behavior is nearly independent of the inlet discharge height for the studied range. The proposed wall confluent jets supply device is compared with a mixing supply device, impinging supply device and displacement supply device. The results show that the proposed wall confluent jets supply device has the combined behavior of both mixing and stratification principles. The proposed wall confluent jets supply device provides better overall ventilation performance than the mixing and displacement supply devices used in this study. This study covers also another application of confluent jets that is based on impinging technology. The supply device under consideration has an array of round jets on a curve. Multiple jets issue from the supply device aperture, in which the supply device is positioned vertically and the jets are directed against a target wall. The flow behavior and ventilation performance of the impinging confluent jets supply device is studied experimentally in an industrial premise. The results show that the impinging confluent jets supply device maintains acceptable thermal comfort in the occupied zone by creating well-distributed airflow during cold and hot seasons.

Page generated in 0.0784 seconds