1 |
NUMERICAL ANALYSIS OF TURBULENT GAS-SOLID FLOWS IN A VERTICAL PIPE USING THE EULERIAN TWO-FLUID MODEL2013 January 1900 (has links)
Turbulent gas-solid flows are readily encountered in many industrial and environmental processes. The development of a generic modeling technique for gas-solid turbulent flows remains a significant challenge in the field of mechanical engineering. Eulerian models are typically used to model large systems of particles. In this dissertation, a numerical analysis was carried out to assess a current state-of-the-art Eulerian two-fluid model for fully-developed turbulent gas-solid upward flow in a vertical pipe. The two-fluid formulation of Bolio et al. (1995) was adopted for the current study and the drag force was considered as the dominant interfacial force between the solids and fluid phase. In the first part of the thesis, a two-equation low Reynolds number k-ε model was used to predict the fluctuating velocities of the gas-phase which uses an eddy viscosity model. The stresses developed in the solids-phase were modeled using kinetic theory and the concept of granular temperature was used for the prediction of the solids velocity fluctuation.
The fluctuating drag, i.e., turbulence modulation term in the transport equation of the turbulence kinetic energy and granular temperature was used to capture the effect of the presence of the dispersed solid particles on the gas-phase turbulence. The current study documents the performance of two popular turbulence modulation models of Crowe (2000) and Rao et al. (2011). Both models were capable of predicting the mean velocities of both the phases which were generally in good agreement with the experimental data. However, the phenomena that small particles cause turbulence suppression and large particles cause turbulence enhancement was better captured by the model of Rao et al. (2011); conversely, the model of Crowe (2000) produced turbulence enhancement in all cases. Rao et al. (2011) used a modified wake model originally proposed by Lun (2000) which is activated when the particle Reynolds number reaches 150. This enables the overall model to produce turbulence suppression and augmentation that follows the experimental trend.
The granular temperature predictions of both models show good agreement with the limited experimental data of Jones (2001). The model of Rao et al. (2011) was also able to capture the effect of gas-phase turbulence on the solids velocity fluctuation for three-way coupled systems. However, the prediction of the solids volume fraction which depends on the value of the granular temperature shows noticeable deviations with the experimental data of Sheen et al. (1993) in the near-wall region. Both turbulence modulation models predict a flat profile for the solids volume fraction whereas the measurements of Sheen et al. (1993) show a significant decrease near the wall and even a particle-free region for flows with large particles.
The two-fluid model typically uses a low Reynolds number k-ε model to capture the near-wall behavior of a turbulent gas-solid flow. An alternative near-wall turbulence model, i.e., the two-layer model of Durbin et al. (2001) was also implemented and its performance was assessed. The two-layer model is especially attractive because of its ability to include the effect of surface roughness. The current study compares the predictions of the two-layer model for both clear gas and gas-solid flows to the results of a conventional low Reynolds number model. The effects of surface roughness on the turbulence kinetic energy and granular temperature were also documented for gas-particle flows in both smooth and rough pipes.
|
2 |
Experimental study of particle-induced turbulence modification in the presence of a rough wallTay, Godwin Fabiola Kwaku 01 June 2015 (has links)
This thesis reports an experimental investigation of low Reynolds number particle-laden turbulent flows in a horizontal plane channel. Experiments were conducted over a smooth wall and over two rough surfaces made from sand grain and gravel of relative roughness k/h ≈ 0.08 and 0.25, respectively, where k is the roughness height and h is the channel half-height. The flow was loaded with small solid particles with diameters less than 1/10 of the length scale of the energy-containing eddies, and whose concentrations decreased with time due to sedimentation. A novel particle image velocimetry (PIV) method that employed colour filtering for phase discrimination was used to measure the velocities of the fluid and solid particles.
Over the smooth wall, the particles mean velocity, turbulence intensities and Reynolds shear stress matched those of the unladen flow very well. There were substantial differences between particle and fluid profiles over the rough wall, which include more rapid reduction in the particle mean velocity and significantly larger turbulence intensities and Reynolds shear stress compared to the unladen flow values.
Stratification of the particle concentration led to attenuation of the fluid wall-normal turbulence intensity. This effect was nullified by the roughness perturbation leading to collapse of the wall-normal turbulence intensities over the rough wall. The streamwise turbulence intensity also collapsed over the rough wall but it was found that particles augmented the fluid Reynolds shear stress due to enhanced correlation between the rough wall streamwise and wall-normal velocity fluctuations. A quadrant decomposition of the fluid Reynolds shear stress also revealed corresponding enhancements in ejections and sweeps, the dominant contributors to the Reynolds shear stress, over the rough wall.
Based on two-point correlations between the velocity fluctuations and between the velocity fluctuations and swirling strength, it was concluded that both wall roughness and particles modified the turbulence structure by increasing the size of the larger-scale structures. The idea of eddies growing from the wall, thereby enhancing communication between the inner layer and outer parts of the flow, has implications for wall-layer models that assume that the outer layer is detached from the turbulence in the inner region.
|
3 |
Study on Upward Turbulent Bubbly Flow in Ducts / ダクト内における上昇気泡乱流に関する研究Zhang, Hongna 24 September 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第18590号 / 工博第3951号 / 新制||工||1607(附属図書館) / 31490 / 京都大学大学院工学研究科原子核工学専攻 / (主査)教授 功刀 資彰, 教授 中部 主敬, 准教授 横峯 健彦 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
|
4 |
Řešení turbulentního dvoufázového proudění metodou Large Eddy Simulation / Large Eddy Simulation of Turbulent Two-Phase FlowVolavý, Jaroslav Unknown Date (has links)
Doctoral thesis deals with the numerical simulations of two-phase flows, especially with prediction of movement of dispersed phase (particles) carried by fluid. The Euler-Lagrange approach was applied for description of the system fluid-particles. It means that the fluid is considered to be continuum and its movement is described using Euler approach. Particles are regarded as mass points and their movement is solved using Lagrangian approach. The Large Eddy Simulation method was adopted for solution of the fluid flow. The series of simulations of the backward-facing step flow laden with particles were performed. The concentration of the particles in the flow was high enough for consideration of the influence of particles on the turbulence of the carrier phase. The developed scheme for generation of turbulence on the inlet is applied. The influence of anisotropic decomposition of subgrid energy on movement of particles was studied in the frame of this work.
|
5 |
Lagrangian stochastic modeling of turbulent gas-solid flows with two-way coupling in homogeneous isotropic turbulence / Modélisation lagrangienne stochastique des écoulements gaz-solides turbulents avec couplage inverse en turbulence homogène isotrope stationnaireZeren, Zafer 29 October 2010 (has links)
Dans ce travail de thèse, réalisé à l'IMFT, nous nous sommes intéressés aux écoulements turbulents diphasiques gaz-solides et plus particulièrement au phénomène de couplage inverse qui correspond à la modulation de la turbulence par la phase dispersée. Ce mécanisme est crucial pour les écoulements à forts chargements massiques. Dans cette thèse, nous avons considéré une turbulence homogène isotrope stationnaire sans gravité dans laquelle des particules sont suivies individuellement d'une façon Lagrangienne. La turbulence du fluide porteur est obtenue par des simulations directes (DNS). Les particules sont sphériques, rigides et d'une taille inférieure aux plus petites échelles de la turbulence. Leur densité est bien plus grande que la densité du fluide. Dans ce cadre, la force la plus importante agissant sur les particules est celle de traînée. Les interactions inter-particules ainsi que la gravité ne sont pas prises en compte. Pour modéliser ce type d'écoulement, une approche stochastique est utilisée pour laquelle l'accélération du fluide est modélisée par une équation de Langevin. L'originalité de ce travail est la prise en compte de l'effet de la modulation de la turbulence par un terme additionnel. Nous avons proposé deux modèles : une force de couplage moyenne qui est définie à partir des vitesses moyennes des phases, et une force instantanée qui est définie à l'aide du formalisme mésoscopique Eulérien. La fermeture des modèles s’appuie sur la fonction d’autocorrélation Lagrangienne et l’équation de transport de l’énergie cinétique. Les modèles sont testés en terme de prédiction de la vitesse de dérive et des corrélations fluide-particule. Les résultats montrent que le modèle moyen, plus simple, prend en compte les effets principaux du couplage inverse. Cependant, le problème de fermeture pratique est reporté sur la modélisation de l’échelle intégrale Lagrangienne et l’énergie cinétique de la turbulence du fluide vue par les particules. / In this thesis, performed in IMFT, we are interested in the turbulent gas-solid flows and more specifically, in the phenomenon of turbulence modulation which is the modification of the structure of the turbulence due to the solid particles. This mechanism is crucial in flows with high particle mass-loadings. In this work, we considered a homogeneous isotropic turbulence without gravity kept stationary with stochastic type forcing. Discrete particles are tracked individually in Lagrangian manner. Turbulence of the carrier phase is obtained by using DNS. The particles are spherical, rigid and of a diameter smaller than the smallest scales of turbulence. Their density is very large in comparison to the density of the fluid. In this configuration the only force acting on the particles is the drag force. Volume fraction of particles is very small and inter-particle interactions are not considered. To model this type of flow, a stochastic approach is used where the fluid element accel- eration is modeled using stochastic Langevin equation. The originality in this work is an additional term in the stochastic equation which integrates the effect of the particles on the trajectory of fluid elements. To model this term, we proposed two types of modeling: a mean drag model which is defined using the mean velocities from the mean transport equations of the both phases and an instantaneous drag term which is written with the help of the Mesoscopic Eulerian Approach. The closure of the models is based on the Lagrangian auto- correlation function of the fluid velocity and on the transport equation of the fluid kinetic energies. The models are tested in terms of the fluid-particle correlations and fluid-particle turbulent drift velocity. The results show that the mean model, simple, takes into account the principal physical mechanism of turbulence modulation. However, practical closure problem is brought forward to the Lagrangian integral scale and the fluid kinetic energy of the fluid turbulence viewed by the particles.
|
6 |
Modulation de mélange, transport et turbulence dans des suspensions solides : étude et modélisation / Mixing, transport and turbulence modulation in solid suspensions : study and modellingLaenen, François 24 February 2017 (has links)
Le transport de particules par des écoulements turbulents est un phénomène présent dans de nombreux écoulements naturels et industriels, tels que la dispersion de polluants dans l'atmosphère ou du phytoplancton et plastiques dans et à la surface des océans. Les modèles prédictifs classiques ne peuvent prévoir avec précision la formation de larges fluctuations de concentrations. La première partie de cette thèse concerne une étude de la dispersion turbulente de traceurs émis à partir d'une source ponctuelle et continue. Les fluctuations spatiales de masse sont déterminées en fonction de la distance à la source et à l'échelle d'observation. La combinaison de plusieurs phénomènes physiques à l'origine du mélange limite la validité d'une caractérisation de géométrie fractale. Une approche alternative est proposée, permettant d'interpréter les fluctuations massiques en terme des différents régimes de séparation de pair dans des écoulements turbulents. La seconde partie concerne des particules ayant une inertie finie, dont la dispersion dans l'espace des vitesses requiert de développer des techniques de modélisation adaptées. Une méthode numérique originale est proposée pour exprimer la distribution des particules dans l'espace position-vitesse. Cette méthode est ensuite utilisée pour décrire la modulation de la turbulence bi- dimensionnelle par des particules inertielles. A grand nombres de Stokes, l'effet montré est analogue à celui d'une friction effective à grande échelle. Aux petits Stokes, le spectre de l'énergie cinétique du fluide et les transferts non-linéaires sont modifiées d'une manière non triviale. / The transport of particles by turbulent flows is ubiquitous in nature and industry. It occurs in planet formation, plankton dynamics and combustion in engines. For the dispersion of atmospheric pollutants, traditional predictive models based on eddy diffusivity cannot accurately reproduce high concentration fluctuations, which are of primal importance for ecological and health issues. The first part of this thesis relates to the dispersion by turbulence of tracers continuously emitted from a point source. Mass fluctuations are characterized as a function of the distance from the source and of the observation scale. The combination of various physical mixing processes limits the use of fractal geometric tools. An alternative approach is proposed, allowing to interpret mass fluctuations in terms of the various regimes of pair separation in turbulent flows. The second part concerns particles with a finite and possibly large inertia, whose dispersion in velocity requires developing efficient modelling techniques. A novel numerical method is proposed to express inertial particles distribution in the position-velocity phase space. Its convergence is validated by comparison to Lagrangian measurements. This method is then used to describe the modulation of two-dimensional turbulence by large-Stokes-number heavy particles. At high inertia, the effect is found to be analogous to an effective large-scale friction. At small Stokes numbers, kinetic energy spectrum and nonlinear transfers are shown to be modified in a non-trivial way which relates to the development of instabilities at vortices boundaries.
|
Page generated in 0.1251 seconds