• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 2
  • Tagged with
  • 16
  • 16
  • 16
  • 11
  • 7
  • 6
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Application of PI-deconvolution to the screening of protein ligand combinatorial libraries using the yeast-two-hybrid assay

Aparicio de Navaraez, Alberto 28 November 2008 (has links)
Reagents that bind proteins are applicable in biology for detection of molecules, perturbation of signaling pathways and development of small-molecule pharmaceuticals. Protein ligands interact with proteins, inhibiting or altering their function. They are isolated from combinatorial libraries to interact with a specific target, using selection techniques such as phage display or yeast-two-hybrid assay. For the latter, one inconvenience is the detection of false positives, which can be solved by screening pools containing the samples to be tested, instead of individual samples. Samples are distributed in the pools following a pooling design. The PI-deconvolution pooling design was developed to screen cDNA libraries using the yeast-two-hybrid assay, which are smaller in size than protein ligand combinatorial libraries. Modifications to the PI-deconvolution screening technique were developed to adapt it to the screening of protein ligand combinatorial libraries using the yeast-two-hybrid assay. Every spot of the array containing the combinatorial library was randomly pooled. However, the yeast-two-hybrid assay loses sensitivity when strains are pooled. As PI-deconvolution requires detecting every interaction, we determined the optimal amount of library members that can be pooled in a spot, and the optimal number of replicates to ensure the detection of an interaction.<p> The yeast-two-hybrid assay was used to perform a screening of a combinatorial library with seven domains of BCR-ABL, which were pooled according to PI-deconvolution. BCR-ABL is a chimeric protein with unregulated kinase activity that is responsible for chronic myelogenous leukemia. The scaffold used in the combinatorial library was an engineered intein that forms lariat peptides. After a screening of this library was performed, positive interactions were detected in 775 spots of the arrays that contained 1432 positive hits. Only 53 spots were deconvoluted. The coding sequences of the lariat peptides were determined for 23 lariat peptides interacted with the GEF domain of BCR, and for ABL, two with the FABD domain, one with the SH1 domain, and one with the SH3 domain. Finally, a &beta;-galactosidase assay was performed to assess the affinity of the lariat peptides for their target.<p> The isolated lariat peptides are potential inhibitors of BCR-ABL that can have therapeutic potential. This study will improve other screenings of combinatorial libraries with the yeast-two-hybrid assay.
12

Characterization of the Ubc13-Mms2 Lysine-63-linked ubiquitin conjugating complex

Pastushok, Landon Keith 01 May 2006
Ubiquitylation is an indispensable post-translational modification system in eukaryotic cells that leads to the covalent attachment of a small ubiquitin (Ub) protein onto a target. The traditional and best-characterized role for ubiquitylation is a fundamental regulatory mechanism whereby target proteins are tagged with a characteristic Lys48-linked Ub chain that signals for their elimination through proteasomal degradation. Challenging this conventional wisdom is the finding that some ubiquitylated proteins are modified by Ub chains linked through Lys63, providing a molecular signal that is thought to be structurally and functionally distinct from Lys48-linked Ub chains. Of further interest and significance is that the Lys63-linked Ub chains are apparently synthesized through a novel biochemical mechanism employing a unique complex formed between a true Ub conjugating enzyme (E2), Ubc13, and an E2-variant (Uev), Mms2 (or Uev1A). The goal of this thesis was to employ structural and functional approaches in order to better characterize the Ubc13-Mms2 Lys63-linked Ub conjugation complex. <p>Error-free DNA damage tolerance (DDT) in the budding yeast is dependent on Lys63-linked Ub chains synthesized by Ubc13-Mms2 and thus provided the opportunity to experimentally test the function of the human UBC13 and MMS2 genes in a simple model organism. Human UBC13 and MMS2 were each shown to function in place of their yeast counterparts and in accordance, human Ubc13 was shown to physically interact with yeast Mms2, and vice versa. Two human MMS2 homologs were also tested and it was determined that UEV1A but not UEV1B can function in place of mms2 in yeast DDT. Physical interactions were observed between Ubc13 and Uev1A, but not between Ubc13 and Uev1B, suggesting that Ubc13-Uev complex formation is required for function. <p>In collaboration with a research group at the University of Alberta, crystal structure and NMR data were used to develop a mechanistic model for the conjugation of Lys63-linked Ub chains by the Ubc13-Mms2 heterodimer, whereby the special orientation of two Ub molecules facilitates a specific Ub-Ub linkage via Lys63. In order to help support the in vitro model and to determine how the Ubc13-Mms2 structure relates to biological function, I used a structure-based approach to direct the creation of point mutations within four key regions of the Ubc13-Mms2 heterodimer; the Ubc13 active-site, the Ubc13-E3 (Ub ligating enzyme) interface, the Mms2-Ub interface, and the Ubc13-Mms2 interface. <p>Underscoring the importance of the Ub conjugation by Ubc13-Mms2, a Ubc13-C87S active-site mutation was created that could bind to Mms2 but was unable to function in DDT. Regarding the Ubc13-E3 interface, a single Ubc13-M64A point mutation had a potent effect on disrupting Ubc13 function in DDT, as well as its physical interaction with Rad5, TRAF6, and CHFR. The results suggest that different RING finger E3s use the same Ubc13 surface to sequester the Ub conjugation activity of Ubc13-Mms2. Two human Mms2 mutations at Ser32 and Ile62, which are contained within the Mms2-Ub interface, were found to reduce the ability of Mms2 to bind Ub. When the corresponding yeast mutations are combined, a synergistic loss in DDT function is observed. The relative orientation of Ser32 and Ile62 suggests that the Mms2 and Tsg101 Uev families use different Uev surfaces to physically interact with Ub. A 200 ìM dissociation constant for the wild-type Mms2-Ub interaction was also determined. The systematic mutagenesis and testing of 14 Ubc13-Mms2 interface residues led to mutants with partial or complete disruption of binding and function. Using this data, a model involving the insertion of a specific Mms2-Phe residue into a unique Ubc13 hydrophobic pocket was created to explain the specificity of Mms2 for Ubc13, and not other E2s. In addition, the dissociation constant for the wild-type Ubc13-Mms2 heterodimer was determined to be approximately 50 nM. <p>The structural and functional studies strongly support the notion that Ubc13-Mms2 complex has the unique ability to conjugate Lys63-linked Ub chains. However, several reported instances of Lys63-linked Ub chains in vivo have not yet been attributed to Ubc13 or Mms2. To address the disparity I was able to demonstrate and map a physical interaction between Mms2 and Rsp5, an E3 implicated in Lys63-linked Ub conjugation. Surprisingly, it was found that MMS2 is not responsible for the RSP5-dependent Lys63-linked Ub conjugation of a plasma membrane protein. A possible explanation for the apparent paradox is presented.
13

Characterization of the Ubc13-Mms2 Lysine-63-linked ubiquitin conjugating complex

Pastushok, Landon Keith 01 May 2006 (has links)
Ubiquitylation is an indispensable post-translational modification system in eukaryotic cells that leads to the covalent attachment of a small ubiquitin (Ub) protein onto a target. The traditional and best-characterized role for ubiquitylation is a fundamental regulatory mechanism whereby target proteins are tagged with a characteristic Lys48-linked Ub chain that signals for their elimination through proteasomal degradation. Challenging this conventional wisdom is the finding that some ubiquitylated proteins are modified by Ub chains linked through Lys63, providing a molecular signal that is thought to be structurally and functionally distinct from Lys48-linked Ub chains. Of further interest and significance is that the Lys63-linked Ub chains are apparently synthesized through a novel biochemical mechanism employing a unique complex formed between a true Ub conjugating enzyme (E2), Ubc13, and an E2-variant (Uev), Mms2 (or Uev1A). The goal of this thesis was to employ structural and functional approaches in order to better characterize the Ubc13-Mms2 Lys63-linked Ub conjugation complex. <p>Error-free DNA damage tolerance (DDT) in the budding yeast is dependent on Lys63-linked Ub chains synthesized by Ubc13-Mms2 and thus provided the opportunity to experimentally test the function of the human UBC13 and MMS2 genes in a simple model organism. Human UBC13 and MMS2 were each shown to function in place of their yeast counterparts and in accordance, human Ubc13 was shown to physically interact with yeast Mms2, and vice versa. Two human MMS2 homologs were also tested and it was determined that UEV1A but not UEV1B can function in place of mms2 in yeast DDT. Physical interactions were observed between Ubc13 and Uev1A, but not between Ubc13 and Uev1B, suggesting that Ubc13-Uev complex formation is required for function. <p>In collaboration with a research group at the University of Alberta, crystal structure and NMR data were used to develop a mechanistic model for the conjugation of Lys63-linked Ub chains by the Ubc13-Mms2 heterodimer, whereby the special orientation of two Ub molecules facilitates a specific Ub-Ub linkage via Lys63. In order to help support the in vitro model and to determine how the Ubc13-Mms2 structure relates to biological function, I used a structure-based approach to direct the creation of point mutations within four key regions of the Ubc13-Mms2 heterodimer; the Ubc13 active-site, the Ubc13-E3 (Ub ligating enzyme) interface, the Mms2-Ub interface, and the Ubc13-Mms2 interface. <p>Underscoring the importance of the Ub conjugation by Ubc13-Mms2, a Ubc13-C87S active-site mutation was created that could bind to Mms2 but was unable to function in DDT. Regarding the Ubc13-E3 interface, a single Ubc13-M64A point mutation had a potent effect on disrupting Ubc13 function in DDT, as well as its physical interaction with Rad5, TRAF6, and CHFR. The results suggest that different RING finger E3s use the same Ubc13 surface to sequester the Ub conjugation activity of Ubc13-Mms2. Two human Mms2 mutations at Ser32 and Ile62, which are contained within the Mms2-Ub interface, were found to reduce the ability of Mms2 to bind Ub. When the corresponding yeast mutations are combined, a synergistic loss in DDT function is observed. The relative orientation of Ser32 and Ile62 suggests that the Mms2 and Tsg101 Uev families use different Uev surfaces to physically interact with Ub. A 200 ìM dissociation constant for the wild-type Mms2-Ub interaction was also determined. The systematic mutagenesis and testing of 14 Ubc13-Mms2 interface residues led to mutants with partial or complete disruption of binding and function. Using this data, a model involving the insertion of a specific Mms2-Phe residue into a unique Ubc13 hydrophobic pocket was created to explain the specificity of Mms2 for Ubc13, and not other E2s. In addition, the dissociation constant for the wild-type Ubc13-Mms2 heterodimer was determined to be approximately 50 nM. <p>The structural and functional studies strongly support the notion that Ubc13-Mms2 complex has the unique ability to conjugate Lys63-linked Ub chains. However, several reported instances of Lys63-linked Ub chains in vivo have not yet been attributed to Ubc13 or Mms2. To address the disparity I was able to demonstrate and map a physical interaction between Mms2 and Rsp5, an E3 implicated in Lys63-linked Ub conjugation. Surprisingly, it was found that MMS2 is not responsible for the RSP5-dependent Lys63-linked Ub conjugation of a plasma membrane protein. A possible explanation for the apparent paradox is presented.
14

Molecular mechanism of pseudopilus assembly in the Klebsiella oxytoca type II secretion system / Mécanisme moléculaire de l’assemblage du pseudopilus dans le système de sécrétion de type II de Klebsiella oxytoca

Santos Moreno, Javier 25 November 2016 (has links)
Le système de sécrétion de type II (SST2) permet la sécrétion de protéines repliées à travers la membrane externe chez les bactéries à Gram-négatif. Le SST2 est une nano-machine enchâssée dans l’enveloppe bactérienne, proche par sa composition et structure aux systèmes d’assemblage des pili de type IV (PT4) impliqués, entre autres, dans d’adhésion et motilité. Chez Klebsiella oxytoca, la surexpression des gènes pul codant le SST2 permet l’assemblage de pili composées des sous-unités PulG. Ceci suggère qu’en conditions physiologiques l’assemblage d’un pseudopilus périplasmique permet la sécrétion du substrat spécifique du SST2, la pullulanase. Dans ce projet nous avons exploré le mécanisme moléculaire de l’assemblage du pseudopilus en se focalisant sur les interactions de PulG avec les composants du SST2 dans la membrane interne. En utilisant l’approche de double-hybride bactérien, nous avons établi le réseau d’interactions de PulG avec les pseudopilins mineures PulH, I, J et K et avec la plateforme d’assemblage (PA). Pour valider ces interactions, nous avons combiné des techniques de biochimie (co-purification par affinité, pontage cystéine et chimique) avec des analyses fonctionnelles de sécrétion et de formation du pseudopilus. Nous avons mis en évidence des interactions entre PulG et les protéines de la PA, PulF et PulM, et nous avons analysé en détail l’interface PulG-PulM. Les résultats suggèrent la formation d’un complexe PulK-I-J-H-G dans la membrane interne impliqué dans des étapes précoces de la formation du pseudopilus, à travers les interactions de PulG et PulH avec PulM et PulF. Nos données expérimentales suggèrent un rôle majeur de PulM dans la sécrétion, vraisemblablement durant l’assemblage du SST2 et l’élongation du pseudopilus. Nos travaux collaboratifs mettant en jeu l'analyse par spectroscopie de masse et en dynamique moléculaire in silico révèlent le rôle essentiel des résidus conservés Glu5 et Thr2 de PulG, requis pour l’interaction avec PulM. Ces données suggèrent que Glu5 participe à l'extraction de PulG de la membrane, en neutralisant la charge positive de son peptide N-terminal par des interactions intramoleculaires. Ces résultats permettent d'établir un modèle détaillant les étapes initiales de l’assemblage des pseudopili dans la membrane interne, relevant pour de futures études sur le SST2 et nanomachines homologues. sécrétion de protéinespili de type 4 assemblage de fibres complexes protéiques membranairesinteractions protéine-protéinemicroscopie à immuno-fluorescence simulations en dynamique moléculairedouble-hybride bactérien spectrométrie de masse nanomachines bacteriennes / The type II secretion system (T2SS) drives the translocation of folded, periplasmic proteins across the outer membrane in Gram-negative bacteria. Secretion is carried out by an envelope-spanning nanomachine that is similar to the apparatus that builds type IV pili (T4P), bacterial surface filaments involved in adhesion, motility and other functions. In the Pul T2SS of Klebsiella oxytoca, overexpression of pul genes in plate-grown bacteria allows the assembly of T4P-like surface fibres made of PulG subunits, suggesting that a periplasmic pseudopilus fibre plays a role in the secretion of the type II substrate pullulanase under physiological conditions. In this project, we explored the molecular mechanism of pseudopilus assembly by focusing on the interaction between PulG and the T2SS inner membrane and pseudopili components. The network of interactions of PulG with the minor pseudopilins PulH, I, J and K and the assembly platform (AP) components was established using bacterial two-hybrid analysis. To validate these interactions, we combined biochemical approaches (affinity co-purification, chemical or cysteine cross-linking) with functional assays of secretion and pseudopilus formation. We provide evidence of the interaction between PulG and the AP proteins PulF and PulM, and delve into the PulG-PulM interface. Our results point to the formation of a PulK-I-J-H-G complex in the plasma membrane involved in early steps of fibre assembly, with a determinant role for PulG and PulH interaction with PulM and PulF. We obtained experimental evidence supporting a major role for PulM in pseudopilus assembly and protein secretion, probably by intervening in the assembly of the T2SS apparatus and in pseudopilus elongation. The results of experimental and in silico studies in collaboration with experts in mass spectrometry and molecular dynamics support the essential role of the highly conserved PulG residues Glu5 and Thr2, which participate in PulM binding. In addition, Glu5 probably favours PulG membrane extraction by neutralising its N-terminal positive charge through intra-molecular interaction. These findings shed new light on early membrane events during fibre assembly, and open new and exciting avenues in research on T2SSs and related nanomachines.protein secretiontype 4 pilifibre assemblymembrane protein complexprotein-protein interactionsimmunofluorescence microscopymolecular dynamics simulationsbacterial two-hybrid assaymass spectrometrybacterial nanomachines
15

Caracterização das plantas transgênicas de silenciamento e de superexpressão do gene 092H06 e estudo da sua proteína recombinante / Characterization of transgenic plants silencing and overexpression the 092H06 gene and the study oh its recombinant protein.

Cossalter, Viviani 21 November 2012 (has links)
A eficiência da reprodução sexual de plantas depende do correto desenvolvimento dos órgãos sexuais: estame e pistilo. Mecanismos moleculares complexos controlam a proliferação e expansão celular que resultam no correto desenvolvimento destes órgãos. Em nosso laboratório foi identificado um gene preferencialmente expresso no pistilo de Nicotiana tabacum, o gene 092H06. Este gene codifica uma pequena proteína de 68 aminoácidos, e função desconhecida. Análises anteriores sugerem que o produto proteico do gene 092H06 seja responsável por inibir o processo de expansão celular nos órgãos reprodutivos (Brito,2010). Para compreender o papel deste gene, no desenvolvimento do pistilo, foram realizados experimentos de qRT-PCR para determinar se os níveis de expressão de genes para -expansina, -expansina, ciclina B1.2 e actina, ligados aos processos de divisão e expansão celular, em plantas transgênicas de silenciamento e superexpressão do gene 092H06. Foram realizadas análises morfológicas nos estigmas/estiletes e ovários das plantas transgênicas de segunda geração (T2), por microscopia óptica. Os resultados mostram uma tendência de aumento no volume das células tanto nas plantas transgênicas de silenciamento, como nas de superexpressão. Entretanto, nas plantas de silenciamento ocorreu um aumento visível das estruturas reprodutivas, o que não foi observado nas plantas de superexpressão. Adicionalmente, foram realizados experimentos de citometria de fluxo, para verificar a ocorrência de endorreduplicação. Os resultados mostraram que não ocorreu endorreduplicação nas células das plantas transgênicas. No screening de uma biblioteca de duplo híbrido, usando 092H06 como isca, foram encontrados 4 candidatos a parceiros de interação: 1) biotin/lipolyl attachmente domain-containing protein; 2) unknown protein; 3) trypsin proteinase inhibitor precursor e 4) RING/U-box. Para auxiliar no estudo da função do gene 092H06, a proteína recombinante 092H06-Histag foi produzida com sucesso, na forma solúvel, em E. coli. Os resultados alcançados neste trabalho contribuem para avançar o conhecimento sobre este novo gene expresso nos órgãos reprodutivos das plantas. / The efficiency of plant sexual reproduction depends on the correct development of the sexual organs: stamen and pistil. Complex molecular mechanisms control cell proliferation and expansion that result in the correct development of these organs. In our laboratory a gene preferentially expressed in Nicotiana tabacum pistil has identified, the 092H06 gene. This gene encodes a small protein of 68 amino acids of unknown function. Previous analyzes suggest that the protein product of the gene 092H06 is responsible for inhibiting the cell expansion process in the reproductive organs (Brito, 2010). To understand the role of this gene in pistil development, experiments of qRT-PCR to determinate the expression levels of the -expansins, -expansins, cyclin B1.2 and actin, genes which connected to the cell division and expansion processes, were carried out on transgenic plants silencing and overexpressing the 092H06 gene. Morphological analyzes on stigmas/styles and ovaries of second generation (T2) transgenic plants were performed by optical microscopy. The results show a tendency to increased cellular volume on the silencing transgenic plants, as well as on the overexpressing plants. However, in the silencing plants there was a visible increase of the reproductive structures, what has not been observed on the overexpressing plants. Additionally, flow cytometry experiments were carried out to verify the occurrence of endoreduplication. The results showed that no endoreduplication has occurred on the cells of the transgenic plants. The screening of a yeast two-hybrid assays, using 092H06 as bait, has found 4 interaction partners candidates: 1) biotin/lipolyl attachment domain-containing protein; 2) unknown protein; 3) trypsin proteinase inhibitor precursor and 4) RING/U-box. To assist the study of the 092H06 function, the recombinant 092H06-HIStag protein has been produced with success, in the soluble form, in E.col. The results obtained in this work contribute to advance the knowledge of this novel gene expressed on the plant reproductive organs.
16

Caracterização das plantas transgênicas de silenciamento e de superexpressão do gene 092H06 e estudo da sua proteína recombinante / Characterization of transgenic plants silencing and overexpression the 092H06 gene and the study oh its recombinant protein.

Viviani Cossalter 21 November 2012 (has links)
A eficiência da reprodução sexual de plantas depende do correto desenvolvimento dos órgãos sexuais: estame e pistilo. Mecanismos moleculares complexos controlam a proliferação e expansão celular que resultam no correto desenvolvimento destes órgãos. Em nosso laboratório foi identificado um gene preferencialmente expresso no pistilo de Nicotiana tabacum, o gene 092H06. Este gene codifica uma pequena proteína de 68 aminoácidos, e função desconhecida. Análises anteriores sugerem que o produto proteico do gene 092H06 seja responsável por inibir o processo de expansão celular nos órgãos reprodutivos (Brito,2010). Para compreender o papel deste gene, no desenvolvimento do pistilo, foram realizados experimentos de qRT-PCR para determinar se os níveis de expressão de genes para -expansina, -expansina, ciclina B1.2 e actina, ligados aos processos de divisão e expansão celular, em plantas transgênicas de silenciamento e superexpressão do gene 092H06. Foram realizadas análises morfológicas nos estigmas/estiletes e ovários das plantas transgênicas de segunda geração (T2), por microscopia óptica. Os resultados mostram uma tendência de aumento no volume das células tanto nas plantas transgênicas de silenciamento, como nas de superexpressão. Entretanto, nas plantas de silenciamento ocorreu um aumento visível das estruturas reprodutivas, o que não foi observado nas plantas de superexpressão. Adicionalmente, foram realizados experimentos de citometria de fluxo, para verificar a ocorrência de endorreduplicação. Os resultados mostraram que não ocorreu endorreduplicação nas células das plantas transgênicas. No screening de uma biblioteca de duplo híbrido, usando 092H06 como isca, foram encontrados 4 candidatos a parceiros de interação: 1) biotin/lipolyl attachmente domain-containing protein; 2) unknown protein; 3) trypsin proteinase inhibitor precursor e 4) RING/U-box. Para auxiliar no estudo da função do gene 092H06, a proteína recombinante 092H06-Histag foi produzida com sucesso, na forma solúvel, em E. coli. Os resultados alcançados neste trabalho contribuem para avançar o conhecimento sobre este novo gene expresso nos órgãos reprodutivos das plantas. / The efficiency of plant sexual reproduction depends on the correct development of the sexual organs: stamen and pistil. Complex molecular mechanisms control cell proliferation and expansion that result in the correct development of these organs. In our laboratory a gene preferentially expressed in Nicotiana tabacum pistil has identified, the 092H06 gene. This gene encodes a small protein of 68 amino acids of unknown function. Previous analyzes suggest that the protein product of the gene 092H06 is responsible for inhibiting the cell expansion process in the reproductive organs (Brito, 2010). To understand the role of this gene in pistil development, experiments of qRT-PCR to determinate the expression levels of the -expansins, -expansins, cyclin B1.2 and actin, genes which connected to the cell division and expansion processes, were carried out on transgenic plants silencing and overexpressing the 092H06 gene. Morphological analyzes on stigmas/styles and ovaries of second generation (T2) transgenic plants were performed by optical microscopy. The results show a tendency to increased cellular volume on the silencing transgenic plants, as well as on the overexpressing plants. However, in the silencing plants there was a visible increase of the reproductive structures, what has not been observed on the overexpressing plants. Additionally, flow cytometry experiments were carried out to verify the occurrence of endoreduplication. The results showed that no endoreduplication has occurred on the cells of the transgenic plants. The screening of a yeast two-hybrid assays, using 092H06 as bait, has found 4 interaction partners candidates: 1) biotin/lipolyl attachment domain-containing protein; 2) unknown protein; 3) trypsin proteinase inhibitor precursor and 4) RING/U-box. To assist the study of the 092H06 function, the recombinant 092H06-HIStag protein has been produced with success, in the soluble form, in E.col. The results obtained in this work contribute to advance the knowledge of this novel gene expressed on the plant reproductive organs.

Page generated in 0.0469 seconds