• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 19
  • 5
  • 3
  • Tagged with
  • 56
  • 56
  • 56
  • 29
  • 18
  • 15
  • 11
  • 10
  • 10
  • 9
  • 7
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Dynamics of the free surface of stratified two-phase flows in channels with rectangular cross-sections

Vallée, Christophe 24 April 2012 (has links)
Stratified two-phase flows were investigated at different test facilities with horizontal test sections in order to provide an experimental database for the development and validation of computational fluid dynamics (CFD) codes. These channels were designed with rectangular cross-sections to enable optimal observation conditions for the application of optical measurement techniques. Consequently, the local flow structure was visualised with a high-speed video camera, delivering data with high-resolution in space and time as needed for CFD code validation. Generic investigations were performed at atmospheric pressure and room temperature in two air/water channels made of acrylic glass. Divers preliminary experiments were conducted with various measuring systems in a test section mounted between two separators. The second test facility, the Horizontal Air/Water Channel (HAWAC), is dedicated to co-current flow investigations. The hydraulic jump as the quasi-stationary discontinuous transition between super- and subcritical flow was studied in this closed channel. Moreover, the instable wave growth leading to slug flow was investigated from the test section inlet. For quantitative analysis of the optical measurements, an algorithm was developed to recognise the stratified interface in the camera frames, allowing statistical treatments for comparison with CFD calculation results. The third test apparatus was installed in the pressure chamber of the TOPFLOW test facility in order to be operated at reactor typical conditions under pressure equilibrium with the vessel atmosphere. The test section representing a flat model of the hot leg of the German Konvoi pressurised water reactor (PWR) scaled at 1:3 is equipped with large glass side walls in the region of the elbow and of the steam generator inlet chamber to allow visual observations. The experiments were conducted with air and water at room temperature and maximum pressures of 3 bar as well as with steam and water at boundary conditions of up to 50 bar and 264°C. Four types of experiments were performed, including generic test cases as well as transient validation cases of typical nuclear reactor safety issues. As an example, the co-current flow experiments simulate the two-phase natural circulation in the primary circuit of a PWR. The probability distribution of the water level measured in the reactor pressure vessel simulator was used to characterise the flow in the hot leg. Moreover, the flooding behaviour in this conduit was investigated with dedicated counter-current flow limitation experiments. A comparison of the flooding characteristics with similar experimental data and correlations available in the literature shows that the channel height is the characteristic length to be used in the Wallis parameter for channels with rectangular cross-sections. Furthermore, for the analysis of steam/water experiments, condensation effects had to be taken into account. Finally, the experimental results confirm that the Wallis similarity is appropriate to scale flooding in the hot leg of a PWR over a large range of pressure and temperature conditions. Not least, different examples of comparison between experiment and simulation demonstrate the possibilities offered by the data to support the development and validation of CFD codes. Besides the comparison of qualitative aspects, it is shown exemplarily how to treat the CFD results in order to enable quantitative comparisons with the experiments.
52

Stability And Objectivity Of A Bubbly And Slug Flow Two-Fluid Model With Wake Entrainment

Krishna chaitanya Chetty anamala (9746450) 15 December 2020 (has links)
<div>The current study is aimed at developing a well-posed and objective, i.e., frame invariant, Eulerian one-dimensional (1D) Two-Fluid Model (TFM) to predict flow regime transition from dispersed to clustered bubbly and slug flow for vertical adiabatic two-phase flows. Two-phase flows in general are characterized by local material wave or void fraction wave instabilities and flow regime transitions are one of the important consequences of these instabilities. The physical mechanism of wake entrainment for clustering of dispersed bubbles is proposed, leading to formation of bubble clusters and Taylor bubbles. The focus of the work is on simulation of the local interfacial structures for bubble clusters and Taylor bubbles, using a well-posed, unstable and non-linearly bounded 1D Shallow Water TFM.</div><div><br></div><div>The first part of the current study investigates the dynamic behavior of the well posed 1D mechanistic TFM obtained from the averaging approach of Ishii [1], due to wake entrainment instability. For this, a 1D Shallow Water TFM derived from the 1D mechanistic TFM is used, which retains the same dynamic behavior as that of the latter at short wavelengths and the required wake entrainment force is derived mechanistically. Three stability approaches are followed to study the dynamic behavior of the 1D Shallow Water TFM: characteristics, dispersion analysis, and nonlinear numerical simulations. An in-house code is used for the 1D numerical simulations of the growth of void fraction waves due to wake entrainment. The simulation results are validated with the experimental data of Cheng and Azzopardi [2] and Song et al. [3] To conclude the first part, the 1D results of the two-equation Shallow Water TFM are carried over to the complete four-equation TFM for quasi 1D simulations using the commercial CFD code of ANSYS Fluent.</div><div><br></div>As an alternative to the mechanistic approach, which is based on Newtonian mathematics, a variational approach based on Lagrangian and Hamiltonian mathematics is used in the second part of the thesis. While the mechanistic approach operates in terms of forces acting on the two-phase mixture, the variational approach operates in terms of energies of the two-phase system. To derive the equations of motion using the variational approach, the extended Hamilton principle of least action is applied to the Lagrangian density of the two-phase mixture. One of the appealing features<br>17<br>of this procedure is that the derived equations of motion are objective (Geurst [4]), in particular the added mass terms.<br>Thus, the second part of the current study focuses on deriving an objective, well-posed and unstable 1D TFM as well as developing a constitutive model for the wake entrainment effect using the variational method. Additional momentum transfer terms present in both the liquid phase and gas phase momentum equations, which render the variational TFM objective, are discussed. The variational method is then used to derive the 1D Shallow Water TFM using the fixed flux assumption. The conservative interfacial momentum transfer terms require formulation of the inertial coupling between the phases. Potential flow theory is first used to derive the inertial coupling coefficient for a single bubble and then for a pair of bubbles to consider interaction between the two bubbles. Then, a lumped parameter model is used to derive the inertial coupling coefficient for the wake entrainment effect. A local drag coefficient is obtained for the non-conservative interfacial drag force from the experimental data using kinematic approximation, i.e., force balance between drag and gravity. The linear and non-linear stability analyses are used to address the stability of the 1D variational Shallow Water TFM. The presence of appropriate short-wave physics makes the 1D Shallow Water TFM hyperbolic well-posed and kinematically unstable. Finally, numerical simulations are performed to demonstrate the development of void fraction waves due wake entrainment. The growth of void fraction waves is non-linearly bounded, i.e., Lyapunov stable. The simulation results are compared with the experimental data to validate the propagation properties of void fraction waves for bubble clusters and Taylor bubbles. This work illustrates the short-wave two-phase flow simulation capability of the TFM for the bubbly to slug flow regime transition.
53

Contribution à la simulation d'écoulements diphasiques compressibles à faible vitesse en présence de sauts de pression par approches homogène et bi-fluide / Contribution to the simulation of low-velocity compressible two-phase flows with pressure jumps using homogeneous and two-fluid approaches

Iampietro, David 08 November 2018 (has links)
Les travaux de thèse sont axés sur les méthodes numériques pour les écoulements diphasiques, compressibles, à faible vitesse, avec apparition soudaine de forts gradients de pression. La vitesse matérielle de chacune des phases étant très petite devant la célérité des ondes acoustiques, le régime d'écoulement est dit à faible nombre de Mach. Dans ce travail, la loi d'état de la phase considérée contient toujours une information mesurant sa plus ou moins grande compressibilité. Ainsi, la faible compressibilité de l'eau peut produire un régime d'écoulement où des sauts de pression importants apparaissent même si le nombre de Mach est très faible. La première partie de la thèse s'est focalisée sur un modèle diphasique dit homogène-équilibré. Les deux phases de l'écoulement ont alors la même vitesse, pression, température et même potentiel chimique. Un premier travail a été la construction de solveurs de Riemann approchés dits tout-nombre-de-Mach. En l'absence de transitoire rapide, ces solveurs basent leur contrainte de pas de temps sur la vitesse des ondes matérielles lentes et sont donc précis pour suivre ces dernières. En revanche, lorsqu'une onde de choc rapide traverse l'écoulement, ces solveurs s'adaptent automatiquement afin de la capturer. La seconde partie de la thèse s'est focalisée sur la prise en compte du couplage convection-source dans le cadre des modèles en approche bi-fluides avec effets de relaxation pression-vitesse. Dans ces modèles, les deux phases de l'écoulement possèdent leur propre jeu de variables. Dans ce travail, un schéma implicite à mailles décalées, basé sur l'influence des termes sources dans des problèmes de Riemann linéaires, a été proposé / The present work focuses on numerical methods for low-material velocity compressible two-phase flows with high pressure jumps. In this context, the material velocity of both phases is small compared with the celerity of the acoustic waves. The flow is said to be a low-Mach number flow. In this work, the equation of state of the considered phase always contains information relative to its compressibility. For example, the low-compressibility of liquid water may lead to fast transients in which high pressure jumps are produced even if the flow Mach number is low. The first part of this work has leaned on two-phase homogeneous-equilibrium models. Thus, both phases have the same velocity, pressure, temperature and the same chemical potential. The construction of what is called an all-Mach-number approximate Riemann solver has been conducted. When no fast transients come through the flow, the above solvers enable computations with CFL conditions based on low-material velocities. As a result, they remain accurate to follow slow material interfaces, or subsonic contact discontinuities. However, when fast shock waves propagate, these solvers automatically adapt in order to capture them. The second part of the thesis has been dedicated to the design of numerical methods enhancing the coupling between convection and relaxation for two-fluid models containing pressure-velocity relaxation effects. In such models, both phases have their own set of variables. A time-implicit staggered scheme, based on the influence of relaxation source terms on linear Riemann problems has been proposed.
54

Couplage entre modèles diphasiques à « phases séparées » et à « phase dispersée » pour la simulation de l’atomisation primaire en combustion cryotechnique / Coupling between separated and dispersed two-phase flow models for the simulation of primary atomization in cryogenic combustion

Le Touze, Clément 03 December 2015 (has links)
Les écoulements diphasiques jouent un rôle prépondérant dans les moteurs-fusées à ergols liquides cryogéniques, équipant par exemple les lanceurs de la famille Ariane. L'étude expérimentale de tels engins propulsifs étant complexe et onéreuse, disposer d'outils numériques à même de simuler fidèlement leur fonctionnement se révèle être un objectif aussi important qu'ambitieux. La difficulté majeure réside dans le caractère fortement multi-échelles du problème, si bien qu’aucune approche numérique existante n'est capable à elle seule de décrire parfaitement l'ensemble des échelles liquides. Partant de ce constat, les travaux présentés dans cette thèse visent à mettre en place une stratégie de couplage entre des modèles bien adaptés aux différentes topologies d'écoulement diphasique, et ce dans le cadre de la plateforme logicielle multi-physique CEDRE développée par l'ONERA. La démarche adoptée consiste précisément à coupler un modèle à interface diffuse de type ``4 équations'' pour les zones à phases séparées, et un modèle cinétique eulérien pour la phase dispersée, rendant ainsi possible la description de l’atomisation primaire. Par ailleurs, les conditions sévères qui règnent dans les moteurs cryotechniques, où de forts gradients de température, vitesse et densité sont rencontrés, mettent à l'épreuve la robustesse des méthodes numériques. Une nouvelle méthode MUSCL multipente pour maillages non structurés généraux a ainsi été développée, permettant d’améliorer la robustesse et la précision des schémas de discrétisation spatiale. L’ensemble de la stratégie de couplage est finalement appliquée à la simulation du banc Mascotte de l'ONERA pour la combustion cryotechnique. / Two-phase flows play a significant role for the proper functioning of cryogenic liquid-propellant rocketengines, such as those that equip the launchers of the Ariane family. Since the experimental investigationof such propulsion devices is complex and expensive, developing numerical tools able to accuratelysimulate their functioning, is a crucial but nonetheless ambitious objective. The major difficulty is due tothe multiscale nature of the problem, as a result of which there is currently no numerical approach ableto perfectly describe all the liquid scales on its own. Based on this observation the work presented in thisthesis aims at setting up a coupling strategy between models well-adapted to each two-phase flowtopology, in the framework of the ONERA’s multiphysics CEDRE software. The approach adoptedprecisely consists in coupling a 4-equation diffuse interface model for the separated phases and aeulerian kinetic model for the dispersed phase, thus making it possible to describe primary atomization.Besides, the harsh conditions within cryogenic rocket engines, where large temperature, velocity anddensity gradients are encountered, severely challenge the robustness of numerical methods. A newmultislope MUSCL method for general unstructured meshes is thus developed in order to improve therobustness and accuracy of space discretization schemes. The whole coupling strategy is finally appliedto the numerical simulation of the ONERA’s Mascotte test bench for cryogenic combustion research.
55

Contribution à la modélisation eulérienne unifiée de l’injection : de la zone dense au spray polydispersé / Contribution to a unified Eulerian modeling of fuel injection : from dense liquid to polydisperse spray

Essadki, Mohamed 13 February 2018 (has links)
L’injection directe à haute pression du carburant dans les moteurs à combustion interne permet une atomisation compacte et efficace. Dans ce contexte, la simulation numérique de l’injection est devenue un outil fondamental pour la conception industrielle. Cependant,l’écoulement du carburant liquide dans une chambre occupée initialement par l’air est un écoulement diphasique très complexe ; elle implique une très large gamme d’échelles. L’objectif de cette thèse est d’apporter de nouveaux éléments de modélisation et de simulation afin d’envisager une simulation prédictive de ce type d’écoulement avec un coût de calcul abordable dans un contexte industriel. En effet, au vu du coût de calcul prohibitif de la simulation directe de l’ensemble des échelles spatiales et temporelles, nous devons concevoir une gamme de modèles d’ordre réduit prédictifs. En outre, des méthodes numériques robustes, précises et adaptées au calcul de haute performance sont primordiales pour des simulations complexes.Cette thèse est dédiée au développement d’un modèle d’ordre réduit Eulérien capable de capter tant la polydispersiond’un brouillard de goutte dans la zone dispersée,que la dynamique de l’interface dans le régime de phases séparées. En s’appuyant sur une extension des méthodes de moments d’ordre élevé à des moments fractionnaires qui représentent des quantités géométriques de l’interface, et sur l’utilisation de variables géométrique sen sous-échelle dans la zone où l’interface gaz-liquide ne peut plus être complètement résolue, nous proposons une approche unifiée où un ensemble de variables géométriques sont transportées et valides dans les deux régimes d’écoulement [...]. / Direct fuel injection systems are widely used in combustionengines to better atomize and mix the fuel withthe air. The design of new and efficient injectors needsto be assisted with predictive simulations. The fuel injectionprocess involves different two-phase flow regimesthat imply a large range of scales. In the context of thisPhD, two areas of the flow are formally distinguished:the dense liquid core called separated phases and thepolydisperse spray obtained after the atomization. Themain challenge consists in simulating the combinationof these regimes with an acceptable computational cost.Direct Numerical Simulations, where all the scales needto be solved, lead to a high computational cost for industrialapplications. Therefore, modeling is necessaryto develop a reduced order model that can describe allregimes of the flow. This also requires major breakthroughin terms of numerical methods and High PerformanceComputing (HPC).This PhD investigates Eulerian reduced order models todescribe the polydispersion in the disperse phase andthe gas-liquid interface in the separated phases. First,we rely on the moment method to model the polydispersionin the downstream region of the flow. Then,we propose a new description of the interface by usinggeometrical variables. These variables can provide complementaryinformation on the interface geometry withrespect to a two-fluid model to simulate the primary atomization.The major contribution of this work consistsin using a unified set of variables to describe the tworegions: disperse and separated phases. In the case ofspherical droplets, we show that this new geometricalapproach can degenerate to a moment model similar toEulerian Multi-Size Model (EMSM). However, the newmodel involves fractional moments, which require somespecific treatments. This model has the same capacityto describe the polydispersion as the previous Eulerianmoment models: the EMSM and the multi-fluid model.But, it also enables a geometrical description of the interface...].
56

Experimental Investigations and Theoretical/Empirical Analyses of Forced-Convective Boiling of Confined Impinging Jets and Flows through Annuli and Channels

V.S. Devahdhanush (13119831) 21 July 2022 (has links)
<p>This study comprises experimental investigations and theoretical/empirical analyses of three forced-convective (pumped) boiling schemes: (i) confined round single jet and jet array impingement boiling, and flow boiling through conventional-sized (ii) concentric circular annuli and (iii) rectangular channels. These schemes could be utilized in the thermal management of various applications including high-heat-flux electronic devices, power devices, electric vehicle charging cables, avionics, future space vehicles, etc.</p>

Page generated in 0.0643 seconds