• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimization of Two-photon Excited Fluorescence Enhancement between Tunable and Broadband Femtosecond Laser Pulse Excitations

Wang, Chao 2011 December 1900 (has links)
This project explores optimization of two-photon excited fluorescence (TPEF) enhancement between tunable narrowband and un-tuned broadband femtosecond (fs) laser pulse excitations for two-photon microscopy (TPM). The research is conducted preliminarily in time domain and comprehensively in frequency domain to understand the physics behind TPEF enhancement by un-tuned sub-10 fs nearly transform-limited pulse (TLP) versus tunable 140 fs pulse. The preliminary study on inverse proportionality of TPEF yield to fs-pulse duration delimits a general lower-bound to narrowband fs-pulse regime (pulse duration > 40 fs) with assumption of dye-molecule frequency invariant response. Deviations from this inverse proportionality in broadband fs-pulse regime (pulse duration < 40 fs) highlights dye-molecule frequency variant response, necessity of group delay dispersion (GDD) compensation, and broadband TLP for TPEF enhancement. The follow-up comparative study is made on un-tuned sub-10 fs TLP versus tunable 140 fs pulse excitations using three dye-phantoms (Indo-1, FITC, and TRITC) representative of fluorescent probes with similar TPEF characteristics. The integrated experimental system, with custom-designed GDD compensation, dispersion-less laser-beam expanding and focusing, and compound-lens for efficient fluorescence collection with good spectral resolution, ensures accurate TPEF measurements. Differentiated TPEF enhancements of Indo-1 (1.6), FITC (6.7), and TRITC (5.2) proportionally agree with calculated ones due to the overlap of fs-pulse second harmonic (SH) power spectrum with dye-molecule two-photon excitation (TPE) spectrum. Physically speaking, with broadband sub-10 fs TLP readily involved in both degenerate (v1 = v2) and non-degenerate (v1 ≠ v2) two-photon absorption (TPA), this un-tuned ultrashort fs-pulse excitation simultaneously allows for more accessibility to TPA-associated final states and diversely promotes population of thus excited dye-molecules with the three dye-phantoms. Under environmental influences (mutual quenching through one-photon absorption(s) and solvent effect), multicolor TPEF enhancement observed from a mixture of the three dyes shows promise of sub-10 fs TLP as simultaneous excitation for multiple-dye labeled samples in contrast to compromised excitation with narrowband fs-pulse tuning. Both single- and multicolor TPEF enhancements clarify tradeoff between tunability of narrowband fs-pulse and un-tuned broadband fs-pulse excitations, being instructive to further considerations on optimization of TPEF enhancement by strategic utilization of broadband fs-pulse for better performance of TPM.
2

Large Two-photon Absorption of Highly Conjugated Porphyrin Arrays and Their in vivo Applications

Park, Jong Kang January 2015 (has links)
<p>Two-photon excited fluorescence microscopy (TPM) has become a standard biological imaging tool due to its simplicity and versatility. The fundamental contrast mechanism is derived from fluorescence of intrinsic or extrinsic markers via simultaneous two-photon absorption which provides inherent optical sectioning capabilities. The NIR-II wavelength window (1000–1350 nm), a new biological imaging window, is promising for TPM because tissue components scatter and absorb less at longer wavelengths, resulting in deeper imaging depths and better contrasts, compared to the conventional NIR-I imaging window (700–1000 nm). However, the further enhancement of TPM has been hindered by a lack of good two-photon fluorescent imaging markers in the NIR-II. </p><p>In this dissertation, we design and characterize novel two-photon imaging markers, optimized for NIR-II excitation. More specifically, the work in this dissertation includes the investigation of two-photon excited fluorescence of various highly conjugated porphyrin arrays in the NIR-II excitation window and the utilization of nanoscale polymersomes that disperse these highly conjugated porphyrin arrays in their hydrophobic layer in aqueous environment. The NIR-emissive polymersomes, highly conjugated porphyrins-dispersed polymersomes, possess superb two-photon excited brightness. The synthetic nature of polymersomes enables us to formulate fully biodegradable, non-toxic and surface-functionalized polymersomes of varying diameters, making them a promising and fully customizable multimodal diagnostic nano-structured soft-material for deep tissue imaging at high resolutions. We demonstrated key proof-of-principle experiments using NIR-emissive polymersomes for in vivo two-photon excited fluorescence imaging in mice, allowing visualization of blood vessel structure and identification of localized tumor tissue. In addition to spectroscopic characterization of the two-photon imaging agents and their imaging capabilities/applications, the effect of the laser setup (e.g., repetition rate of the laser, peak intensity, system geometry) on two-photon excited fluorescence measurements is explored to accurately measure two-photon absorption (TPA) cross-sections. A simple pulse train shaping technique is demonstrated to separate pure nonlinear processes from linear background signals, which hinders accurate quantification of TPA cross-sections.</p> / Dissertation
3

Three-photon imaging of ovarian cancer

Barton, Jennifer K., Amirsolaimani, Babak, Rice, Photini, Hatch, Kenneth, Kieu, Khanh 29 February 2016 (has links)
Optical imaging methods have the potential to detect ovarian cancer at an early, curable stage. Optical imaging has the disadvantage that high resolution techniques require access to the tissue of interest, but miniature endoscopes that traverse the natural orifice of the reproductive tract, or access the ovaries and fallopian tubes through a small incision in the vagina wall, can provide a minimally-invasive solution. We have imaged both rodent and human ovaries and fallopian tubes with a variety of endoscope-compatible modalities. The recent development of fiber-coupled femtosecond lasers will enable endoscopic multiphoton microscopy (MPM). We demonstrated two-and three-photon excited fluorescence (2PEF, 3PEF), and second-and third-harmonic generation microscopy (SHG, THG) in human ovarian and fallopian tube tissue. A study was undertaken to understand the mechanisms of contrast in these images. Six patients (normal, cystadenoma, and ovarian adenocarcinoma) provided ovarian and fallopian tube biopsies. The tissue was imaged with three-dimensional optical coherence tomography, multiphoton microscopy, and frozen for histological sectioning. Tissue sections were stained with hematoxylin and eosin, Masson's trichrome, and Sudan black. Approximately 1 mu m resolution images were obtained with an excitation source at 1550 nm. 2PEF signal was absent. SHG signal was mainly from collagen. 3PEF and THG signal came from a variety of sources, including a strong signal from fatty connective tissue and red blood cells. Adenocarcinoma was characterized by loss of SHG signal, whereas cystic abnormalities showed strong SHG. There was limited overlap of two-and three-photon signals, suggesting that three-photon imaging can provide additional information for early diagnosis of ovarian cancer.
4

Microscopias de óptica não linear = fluorescência excitada por absorção de dois fótons, geração de segundo harmônico e geração de terceiro harmônico / Non linear optical microscopies : two photon excited fluorescence, second harmonic generation and third harmonic generation

Pelegati, Vitor Bianchin, 1982- 17 August 2018 (has links)
Orientador: Carlos Lenz Cesar / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin / Made available in DSpace on 2018-08-17T16:12:03Z (GMT). No. of bitstreams: 1 Pelegati_VitorBianchin_M.pdf: 3778666 bytes, checksum: d19d947cc4b4206345d5c2da244362d6 (MD5) Previous issue date: 2010 / Resumo: Biologia celular é um novo mundo promissor com enorme impacto social, econômico e na saúde. Organismos vivos são capazes de, produzir a própria energia a partir da luz do sol, se reproduzir, de se auto-reparar, sinalizar e navegar por sinais bioquímicos, biomecânicos, luminosos, térmicos, e outros, e produzir materiais à temperatura ambiente. As possibilidades abertas por essa área incluem, desde bactérias e protozoários usados para destruir células de câncer, regeneração de órgãos inteiros, produção de etanol a partir de algas, e outros. Entretanto, para o entendimento da biologia em seu nível mais profundo, ferramentas de observação não destrutivas fazem-se necessária para seguir os processos celulares durante seu tempo de vida. A óptica tem a única onda não destrutiva capaz de fornecer informações em tempo real com suficiente resolução espacial de eventos acontecendo internamente à célula. Ademais, porque feixes de luz não colidem, a óptica permite a integração de diferentes técnicas capazes de reunir informações simultâneas de processos celulares. Óptica não linear é especialmente adequada para tal, pois não requer marcação ou processamentos especiais de amostras que poderiam destruir, ou modificar, os processos celulares. Além disso, técnicas elásticas, como a geração de segundo e terceiro harmônicos não liberam energia no material que é, portanto, preservado após a observação. O objetivo dessa tese é desenvolver uma plataforma multimodal para observação de processos biológicos pelo uso de microscopias de fluorescência excitada por absorção de dois fótons, geração de segundo harmônico e geração de terceiro harmônico no mesmo instrumento. Nosso grupo foi pioneiro em demonstrar a aquisição de imagens de geração de segundo harmônico no Brasil e, essa tese é a primeira a realizar a aquisição de imagens por geração de terceiro harmônico. Estas três técnicas juntas fornecem informações complementares a respeito da organização de células e tecidos. Enquanto a fluorescência pode ser específica para algumas proteínas alvo, o segundo harmônico pode observar a rede de colágeno da matriz extra celular e, o terceiro harmônico pode observar os núcleos e gotículas de lipídios internas às células. Esta tese descreve o sistema experimental para realizar essas aquisições multimodais de imagens, a física por trás dos sinais não lineares, importantes para entender seu significado biológico, e mostra aplicações das técnicas para diferentes amostras biológicas e inorgânicas / Abstract: Cell biology is promising a brave new world with enormous social economic and health impacts. Living organisms are capable of producing their own energy from sun light, reproduce, self-repair, signalize and travel in response to biochemical, biomechanical, light and thermal signals among others, and to produce materials at room temperature. The possibilities opened by this area range from bacteria and protozoa used to destroy cancer cells, whole organs regeneration, ethanol produced from algae, and others. However, to actually understand biology at its deepest level no destructive observation tools are necessary to follow cell processes during their time course. Optics is about the only wave capable to provide non destructive real time information with enough spatial resolution of the events happening inside the cells. Moreover, because light beams do not collide, optics allows the integration of different techniques capable to gather simultaneous information during a cell process. Non linear optics is specially suited for that in the sense that it does not require staining or special sample processing that would destroy, or change, the process. Besides, elastic techniques such as second and third harmonic generation do not release energy at the material which is therefore preserved after the observation. The objective of this thesis is to develop a multimodality platform for biology process observation by using Two Photon Excited Fluorescence, Second Harmonic Generation and Third Harmonic Generation Microscopy with the same instrument. Our group was the first one to demonstrate the acquisition of Second Harmonic Generation images in Brazil and this thesis is the first one to perform the acquisition of third harmonic generation images. These three techniques together provide complementary information respect to cell and tissue organization. While fluorescence can be specific target to some proteins, second harmonic can observe the collagen network of extra cellular matrix and the third harmonic can observe the nucleus and lipid droplets inside the cells. This thesis describe the experimental setup to perform these multimodal image acquisition, the physics behind the non linear signals, important to understand their biological mean, and shows applications of these techniques for different biological and inorganic samples / Mestrado / Física / Mestre em Física
5

LIGHT AND CHEMISTRY AT THE INTERFACE OF THEORY AND EXPERIMENT

James Ulcickas (8713962) 17 April 2020 (has links)
Optics are a powerful probe of chemical structure that can often be linked to theoretical predictions, providing robustness as a measurement tool. Not only do optical interactions like second harmonic generation (SHG), single and two-photon excited fluorescence (TPEF), and infrared absorption provide chemical specificity at the molecular and macromolecular scale, but the ability to image enables mapping heterogeneous behavior across complex systems such as biological tissue. This thesis will discuss nonlinear and linear optics, leveraging theoretical predictions to provide frameworks for interpreting analytical measurement. In turn, the causal mechanistic understanding provided by these frameworks will enable structurally specific quantitative tools with a special emphasis on application in biological imaging. The thesis will begin with an introduction to 2nd order nonlinear optics and the polarization analysis thereof, covering both the Jones framework for polarization analysis and the design of experiment. Novel experimental architectures aimed at reducing 1/f noise in polarization analysis will be discussed, leveraging both rapid modulation in time through electro-optic modulators (Chapter 2), as well as fixed-optic spatial modulation approaches (Chapter 3). In addition, challenges in polarization-dependent imaging within turbid systems will be addressed with the discussion of a theoretical framework to model SHG occurring from unpolarized light (Chapter 4). The application of this framework to thick tissue imaging for analysis of collagen local structure can provide a method for characterizing changes in tissue morphology associated with some common cancers (Chapter 5). In addition to discussion of nonlinear optical phenomena, a novel mechanism for electric dipole allowed fluorescence-detected circular dichroism will be introduced (Chapter 6). Tackling challenges associated with label-free chemically specific imaging, the construction of a novel infrared hyperspectral microscope for chemical classification in complex mixtures will be presented (Chapter 7). The thesis will conclude with a discussion of the inherent disadvantages in taking the traditional paradigm of modeling and measuring chemistry separately and provide the multi-agent consensus equilibrium (MACE) framework as an alternative to the classic meet-in-the-middle approach (Chapter 8). Spanning topics from pure theoretical descriptions of light-matter interaction to full experimental work, this thesis aims to unify these two fronts. <br>

Page generated in 0.1354 seconds