• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterisation of the human two-pore channels

Funnell, Timothy January 2011 (has links)
The Ca²⁺-mobilising messenger NAADP has been shown to play a key role in the regulation of mammalian physiology. Recently, the two-pore channels (TPCs) have been proposed as an NAADP-gated Ca²⁺ channel. Chapter 1 introduces the TPCs as the major candidates in governing NAADP-mediated Ca²⁺-release from acidic stores. Chapter 2 explains the methodologies developed and used. Chapter 3 demonstrates the successful immunopurification of HsTPC2 and its incorporation into an artificial lipid bilayer. K⁺ and Ca²⁺ currents were seen in reponse to nM - μM concentrations of NAADP; with the open probability (P₀) fitting a bell-shaped concentration-response curve. Ligand sensitivity was shown to be regulated by luminal [Ca²⁺], whereby a 20-fold increase in [Ca²⁺] <sub>lumen</sub> (10 μM to 200 μM) caused a 100-fold reduction in the EC<sub>50</sub> from ≈ 500 nM to 5 nM. Furthermore, a reduction in luminal pH from 7.2 to 4.8 reduced the P₀ but 1 μM Ned-19 inhibiting all channel activity. Chapter 4 investigates the in situ properties of HsTPC2 by the purification and patch clamp of intact lysosomes from cells overexpressing HsTPC2. Three methods of purification were compared: differential centrifugation, whole lysosome immunoprecipitation and magnetic chromatography. Techniques involving lysosomal swelling and whole cell homogenisation were also optimised to ensure minimal contamination by non-lysosomal proteins. Whole lysosome patch clamping revealed NAADP-induced, Ca²⁺-specific currents in response to NAADP, but not cADPR, IP₃ or Ned-19. High concentrations of NAADP (mM) and Ned-19 (μM) showed prolonged ≈ 5 minutes) inhibition of channel activity. Chapter 5 explores the protein-protein interactions of the purified HsTPC2 and identifies a heterodimeric interaction between HsTPC1 and HsTPC2 was further dissected by coimmunoprecipitation, colocalisation and FRET studies. Despite clear evidence that both isoforms independently form homodimers, it is likely that heterodimerisation is a dynamic interaction only seen in a subset of the channel population. Chapter 6 discusses the results obtained in the wider context of cell physiology.
2

Characterization of mouse two-pore channels (TPCs) in NAADP-mediated Ca(2+) signalling

Chuang, Kai-Ting January 2011 (has links)
Recent studies have identified Two-Pore Channels (TPCs) as the channels activated by NAADP. To date, most studies that characterized these channels have employed heterologous expression or overexpression systems. The research reported here has focused principally on endogenous TPC activity by using single and dual gene knockout (KO) in a mouse system and has yielded insights into TPC expression levels, subcellular localisation, NAADP binding, and channel function. Mouse models that had been generated by both the “gene-trapping” and the “genetargeting” techniques were obtained and validated. These included a knock-down strain (“hypomorph”). Surprisingly, all TPC mutant mice showed no gross phenotypes. In addition to the two known isoforms in mouse, TPC1 and TPC2, the expression of a shorter variant of TPC1 was discovered; this has an alternative (truncated) N-terminus, and has been termed (DELTA)N-TPC1. All TPC variants/isoforms were widely expressed in all mouse tissue types tested. Overexpression of mouse TPCs in mouse embryonic fibroblasts showed that (DELTA)N-TPC1 and TPC2 were expressed primarily in late endosomes/lysosomes while TPC1 was expressed in both endosomes and lysosomes. Dileucine sorting motifs target TPCs to late endosomes/lysosomes; it was shown that truncation or mutation of dileucine motifs significantly reduced localization in late endosomes/lysosomes. Furthermore, TPCs were shown not to be the direct binding target of NAADP, as the high affinity NAADP binding was retained in hepatic membranes from TPC double KO (DKO) mice. It is concluded that NAADP binds to an (as yet, unidentified) accessory protein. The functional role of TPCs was studied in depth using mouse pancreatic acinar cells. NAADP is known to release Ca<sup>2+</sup> from the acidic stores in response to the stimulation by the hormone cholecystokinin (CCK). In all TPC mutant mice, CCK was still able to evoke Ca<sup>2+</sup> oscillations, but with slower and attenuated oscillations in the TPC1 hypomorph, and with slower oscillations in TPC DKO. In all TPC KOs, oscillations were disrupted by known inhibitors of the NAADP-signalling pathway (Ned-19, GPN and bafilomycin A1), indistinguishable from the responses with wild-type cells. This suggests that TPCs are not involved in CCK signalling, although it is possible that functional compensation masked the phenotype arising from the impaired signalling.
3

The role of two pore channels (TPCs) in pancreatic beta cell stimulus-secretion coupling

Heister, Paula Maria January 2012 (has links)
This thesis presents an investigation into the role of the recently identified two pore channels (TPCs) in β-cell stimulus-secretion coupling. TPCs are the receptors for calcium mobilising messenger nicotinic acid adenine dinucleotide phosphate (NAADP) located in the membrane of acidic intracellular calcium stores. It is proposed that they are responsible for the ATP-sensitive potassium channel (Katp channel) independent pathway of stimulus-secretion coupling; and that this pathway is not subordinate to the KAT? channel dependent pathway; but an alternative explanation of stimulus-secretion coupling in its own right. The first section of this thesis presents a characterisation of sub-membrane cal- cium signals observed in primary mouse β-cells in response to glucose and the membrane-permeable acetoxymethyl ester form of NAADP (NAADP-AM) using the non-ratiometric fluorescent calcium indicator fluo-4 and total internal reflection (TIRF) microscopy. These are compared to global cytosolic calcium changes observed with epifluorescence microscopy. Factors affecting the shape and time course of re- sponses are investigated, and pharmacological tools used to provide evidence for the role of intracellular calcium release from acidic stores mediated by NAADP. Having characterised the calcium responses of β-cells using TIRF; the second part of the thesis examines the effects of knocking out TPC2 (single KO), or both TPC1 and TPC2 (DKO) on these responses; after an initial assessment of pancreatic islet and β-cell morphology using electron microscopy. Gender differences in β-cell responses to glucose and NAADP are assessed in both wild type and knockout animals. Finally, the third section presents the discovery of elementary calcium release events in pancreatic β-cells. The current project visualises what are likely the triggering events for the global calcium signals examined in sections one and two. They take the form of localised calcium release in response to NAADP-AM and glucose; akin to sparks and puffs observed by stimulation with cADPR and IP3. Optical quantal analysis demonstrates the quantal nature of the events and estimates the size of the unitary calcium release unit (CRU) for NAADP. .
4

Chemoenzymatic Synthesis of NAADP Derivatives: Probing the Unknown NAADP Receptor

Trabbic, Christopher J. 16 May 2012 (has links)
No description available.
5

Electrophysiological characterization of the human two-pore channel 2

Lam, Andy Ka Ming January 2015 (has links)
The Two-pore channel (TPC1-3) family represents a recently identified class of endolysosomal ion channels. TPCs were originally proposed to be promising candidate channels for NAADP-induced Ca<sup>2+</sup> release. However, subsequent studies have emerged to propose an alternative view where TPCs may be Na+-selective channels regulated by the lysosome-specific phosphoinositide PI(3,5)P2 or voltage in an isoform-dependent manner. This thesis asks the question of whether pharmacological and ion permeation properties of TPCs, in particular the human TPC2, may satisfy or may be consistent with the requirement of a potential NAADP-sensitive Ca<sup>2+</sup>-release channel. These fundamental properties of hTPC2 were approached using patch-clamp electrophysiology and confocal fluorescence microscopy, and were analysed quantitatively to extract relevant physical parameters important to our understanding of their physiological and functional significance. Chapter 2 presents the basic electrophysiological characterisation of hTPC2. It follows a logical way by first determining the ion permeation properties, followed by the investigation of its physical relation with fractional Ca<sup>2+</sup> current and Ca<sup>2+</sup> nanodomains to rigorously prove that this Na<sup>+</sup> selectivity is sufficient to ensure negligible Ca<sup>2+</sup> leakage both experimentally and theoretically. This follows the logic that matter must not be created nor destroyed so that a Na+-selective channel that poses a physiologically significant energy barrier to Ca<sup>2+</sup> permeation from one side would not lead to the creation of Ca<sup>2+</sup> on the other side. Chapter 3 represents a natural progression from Chapter 2 and is aimed at investigating the underlying mechanisms responsible for the electrophysiological ion selectivity observed. This chapter also follows a logical way by first identifying spermine as a high valence intracellular blocker, its mutual antagonism with different external ionic species that allows the determination of ion-binding affinity, followed by the determination of the concentration dependence of ion conduction to identify possible lower affinity binding. By considering all the above qualities, the outcome is a coherent description and connection of ion binding selectivity, kinetic selectivity and ion binding configuration with the observed electrophysiological selectivity. Chapter 4 discusses the missing puzzles and how these questions might be addressed.

Page generated in 0.0404 seconds