• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 6
  • 6
  • 6
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 52
  • 11
  • 9
  • 7
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

NMN-Adenylyltransferase und NAD+-Kinase essentielle Enzyme der NAD(P)+-Synthese /

Berger, Felicitas. January 2003 (has links)
Berlin, Freie Universiẗat, Diss., 2003. / Dateiformat: zip, Dateien im PDF-Format.
2

X-ray crystallographic studies of glucose 6-phosphate dehydrogenase

Naylor, Claire January 1996 (has links)
No description available.
3

Structure of the membrane proximal oxidoreductase domain of human Steap3, the dominant ferrireductase of the erythroid transferrin cycle

Sendamarai, Anoop Kumar Balakrishnan. January 2009 (has links) (PDF)
Thesis (PhD)--Montana State University--Bozeman, 2009. / Typescript. Chairperson, Graduate Committee: C. Martin Lawrence. Includes bibliographical references (leaves 101-112).
4

Expression, Zuordnung, Struktur und Untersuchungen zum Elektronentransportmechanismus des Adrenodoxins ; Optimierung der Expression und Aufreinigung des Elektronentransportproteins Ferredoxin NADP+-Reduktase

Beilke, Dirk. Unknown Date (has links)
Universiẗat, Diss., 2002--Frankfurt (Main).
5

Redoxhomöostase in Arabidopsis thaliana: Untersuchungen zur Rolle der NADP-abhängigen Malatdehydrogenase und der Alternativen Oxidase mittels transgener Pflanzen

Strodtkötter, Inga 16 March 2010 (has links)
Neben dem förderlichen Effekt der Energiegewinnung stellt die Nutzung des Sonnenlichts auch Risiken für Pflanzen dar, insbesondere bei hohen Lichtintensitäten.Um die Balance aus Nutzen und Schaden der Lichtenergie gewährleisten zu können und sich schnell auf sich ändernde Lichtbedingungen einstellen zu können, verfügen Pflanzen über eine Vielzahl von Schutzmechanismen. Ziel der vorliegenden Arbeit war es, mit Hilfe transgener Pflanzen die Rollen der chloroplastidären NADP-abhängigen Malatdehydrogenase (NADP-MDH) und der mitochondrialen Alternativen Oxidase (AOX) im Stoffwechsel von Arabidopsis thaliana (L.) Heynh. näher zu charakterisieren. Die Analyse von nadp-mdh-knockout (ko)-Mutanten hat dabei auf erstaunliche Art und Weise verdeutlicht, wie flexibel der Metabolismus der Pflanze ist, um die Redoxhomöostase bei hohen Lichtintensitäten aufrecht zu erhalten und oxidative Schäden zu vermeiden. Überraschenderweise wurden bei diesen Mutanten selbst beim Wachstum unter hohen Lichtintensitäten keine Unterschiede zu entsprechenden Wildtyp (WT)-Pflanzen sichtbar. Jedoch konnten im Rahmen dieser Arbeit drei kompensatorische Stoffwechselwege aufgedeckt werden, welche die nadpmdh-ko-Pflanzen unter Starklichtbedingungen vor Photoinhibition schützen. So können die Mutanten durch eine erhöhte Aktivität des NTRC-Systems, höhere Photorespirationsraten und die Akkumulation von Prolin im Starklicht für den Erhalt der Redoxhomöostase sorgen und den Verlust der NADP-MDH ausgleichen. Zusätzlich wurden Untersuchungen zur Regulation der NADP-MDH-Expression durchgeführt. Die dazu durchgeführten Analysen der Promotorregion des NADP-MDH-Gens (At5g58330) bestätigten die Hypothese, dass regulatorische Elemente, die das komplexe Expressionsmuster der NADP-MDH in A. thaliana kontrollieren, im Laufe der Evolution in die kodierende Region des Gens verlagert wurden. In einem weiteren Ansatz wurden im Rahmen der vorliegenden Arbeit aox1a-ko-Mutanten untersucht. Eine Inhibition des Cytochrom-Wegs unter Verwendung von Antimycin A (AA), welches in WT-Pflanzen die Expression von AOX1A induziert, führte zu erheblichen Differenzen zwischen aox1a-ko-Mutanten und WT-Pflanzen. Zusammenfassend geben die Befunde eindeutige Hinweise darauf, dass die AOX1A-Isoform in A. thaliana insbesondere unter Stressbedingungen eine entscheidende Aufgabe bei der „Entsorgung“ überschüssiger Reduktionsäquivalente aus den Chloroplasten übernimmt. Auf diese Weise kommt der AOX1A-Isoform eine besondere Bedeutung bei der Optimierung der Photosyntheserate bzw. dem Schutz der photosynthetischen Elektronentransportkette vor Überreduktion zu. Des Weiteren wurde herausgefunden, dass das Fehlen des AOX1A-Isoenzyms nach AA-Behandlung in A. thaliana zu einer erhöhten Expression der AOX1D-Isoform führt.
6

Cambio de especificidad por dinucleótido del sensor fluorescente peredox mediante diseño racional

Cid Hidalgo, Dixon Andrés January 2018 (has links)
Tesis presentada a la Universidad de Chile para optar al grado de Magíster en Bioquímica área de Especialización en Proteínas Recombinantes y Biotecnología y Memoria para optar al Título de Bioquímico / Los dinucleótidos de adenina nicotinamida (NAD(P)(H)) cumplen un rol fundamental como cofactores enzimáticos, principalmente en reacciones de oxido-reducción. Sus concentraciones intracelulares determinan el estado fisiológico celular, en especial la razón NAD(P)H/NAD(P)+, por lo que es necesario tener métodos que permitan una cuantificación confiable de estas moléculas. Los métodos in vitro e in vivo comúnmente utilizados no permiten determinar el estado redox intracelular con precisión dadas las dificultades analíticas que poseen. El diseño de Sensores Fluorescentes Codificados Genéticamente (GEFS, por su sigla en inglés) ayuda a superar esas dificultades, ya que, estos biosensores permiten la cuantificación in vivo y en tiempo real de moléculas específicas, sin dañar las células estudiadas. Estos sensores se diseñan a partir de la fusión de una proteína fluorescente permutada circularmente con un dominio sensor proteico capaz de generar un cambio conformacional en respuesta a la unión de un ligando específico. Utilizando esta estrategia, muchos GEFS han sido diseñados para la cuantificación in vivo de dinucleótidos. Entre los sensores de dinucleótidos publicados a la fecha de inicio de esta tesis, el sensor Peredox era el único GEFS capaz de detectar la razón NADH/NAD+ intracelular. Peredox utiliza como dominio sensor al represor transcripcional sensible al estado redox T-Rex del organismo Thermus aquaticus. Aunque T-Rex es capaz de unir tanto NADH como NAD+, sólo la unión del dinucleótido reducido induce un cambio conformacional de una forma abierta a una cerrada. Este fenómeno permite a Peredox detectar la razón NADH/NAD+. Usando Peredox y la información estructural de T-Rex como punto de partida, el objetivo de esta tesis fue estudiar los determinantes estructurales de especificidad de dinucleótido con el fin de avanzar hacia la generación de un GEFS capaz de detectar la razón NADPH/NADP+, del cual no hay sensores diseñados a la fecha. Para esto se utilizaron estrategias de Diseño Racional mediante aproximaciones in silico e in vitro. Se determinó experimentalmente que el loop β4-β5 de T-Rex contiene determinantes estructurales de la especificidad por dinucleótido. Mediante análisis de Potenciales Estadísticos, comparación de motivos de especificidad basados en homología y simulaciones de Dinámica Molecular, se determinó los residuos clave en la especificidad por NAD(H) y las mutaciones necesarias para obtener una variante NADPH preferente. Se evaluó el efecto de estas mutaciones en la especificidad por NAD(P)H a través de ensayos in vitro de fluorescencia, obteniéndose un sensor preferente por NADPH. Sin embargo, el sensor no presentó un mecanismo de unión mutuamente excluyente a NADPH y NADP+, condición sine qua non para que un sensor de cuenta de la razón NADPH/NADP+ / Nicotinamide adenine dinucleotides (NAD(P)(H)) play a fundamental role as enzymatic cofactors, mostly on oxidation-reduction reactions. The intracellular concentrations of these dinucleotides determine the cellular physiological state, especially the NAD(P)H/NAD(P)+ ratio, so it is necessary to have methods that allow a reliable quantification of these molecules. The in vitro and in vivo methods commonly used do not allow to determine the intracellular redox state with accuracy, given the analytical difficulties they show. The design of Genetically Encoded Fluorescent Sensors (GEFS) aids to overcome these difficulties, since they can perform real-time in vivo detection of specific molecules, without damaging the cells studied. These sensors are designed from the fusion of a circularly permuted fluorescent protein with a protein sensor domain capable of generating a conformational change in response to the binding of a specific ligand. Using this strategy, many GEFS have been designed for in vivo quantification of dinucleotides. Among the dinucleotide sensors published at the start date of this thesis, the sensor Peredox was the only GEFS capable of detecting intracellular NADH/NAD+ ratio. Peredox uses the redox-sensing transcriptional repressor T-Rex, from Thermus aquaticus, as a sensor domain. Although T-Rex is capable of binding both NADH and NAD+, only the binding of the reduced dinucleotide induces a conformational change from an open to a closed form. This phenomenon allows Peredox to detect the NADH/NAD+ ratio. Using Peredox and the structural information of T-Rex as a starting point, the goal of this thesis was the study of the structural determinants of dinucleotide specificity, with aim to achieve to a GEFS capable of detecting the NADPH/NADP+ ratio. There is no sensor designed for this parameter to date. To achieve this goal, we used Rational Design strategies, through in silico and in vivo aproximations. We determined experimentally that β4-β5 loop of T-Rex contains structural determinants of dinucleotide specificity. Through statistical potential analysis, homology-guided comparison of specificity motifs and Molecular Dynamics simulations, a triple mutant of T-Rex was proposed. The effect of these mutations on the specificity for NAD(P)H was evaluated through in vitro fluorescence assays, obtaining a Peredox variant with NADPH preference. However, the sensor did not show a mutually-exclusive binding fashion of NADPH and NADP+, a sine qua non condition for a sensor of the NADPH/NADP+ ratio / Fondecyt
7

FDXR-mRNA-Expression beim kolorektalen Karzinom : Einfluss von 5-Fluoruracil /

Schneider, Mark. January 2007 (has links)
Zugl.: Diss.
8

Human red cell NADP-dependent xylitol dehydrogenase: kinetic and genetic studies

Lane, Anthony Bruce January 1984 (has links)
A Thesis submitted to the Faculty of Medicine, University of the Witwatersrand, Johannesburg, for the Degree of Doctor of Philosophy. / A deficiency of the enzyme NADP dependent xylitol dehydrogenase (L-xylulose reductase) has previously been found to be the cause of chronic essential pentosuria. Essential pentosuria is a recessively inherited condition which is marked by the continual excretion of relatively large amounts of the enzymes substrate, L-xylulose. The major objective of the study described was to find a simple method for the identification of individuals who are heterozygous for the "pentosuria" and normal alleles. The pentosuria allele could then be used as a gene marker in linkage studies aimed at mapping the L-xylulose reductase locus. A L-xylulose reductase assay suitable for the identification of carriers of essential pentosuria was developed and tested on members of a South African Lebanese family in which the inheritance of pentosuria had previously been suggested to be dominant. It was found that family members could, on the basis of their L-xylulose reductase activities, be classified as either normal, heterozygous or homozygous for the pentosuria allele. Measurements of serum L-xylulose concentrations revealed that pentosuria is, contrary to the previous report, . recessively inherited in this family. A sample of the local Ashkenazi Jewish population was screened for pentosuria carriers. Six out of the 237 individuals screened were found (on the basis of their L-xylulose reductase activities and from the results of a loading test), to carry the pentosuria allele. The frequency of the pentosuria allele in this population was estimated from the apparent heterozygote frequency to be 0.0127. Linkage analyses were carried out on the families of the identified heterozygotes and on members of the Lebanese family mentioned above. No evidence of tight linkage was found between the pentosuria allele's locus and those coding for various red cell antigens, red cell enzymes and serum proteins. Kinetic, chromatographic and electrophoretic studies revealed that the red cells of normal individuals contain two distinct L-xylulose reductases, a minor and a major isozyme. Pentosurics lack the major isozyme but appear to have approximately normal amounts of the minor isozyme. The minor isozyme is e1ectrophoretica 1 1 y distinct from the major isozyme, has markedly higher Michael is constants for the substrates L-xylulose and xylitol and shows a lower pH optimum when catalysing the oxidation of xylitol. Electrophoresis also revealed that liver tissue contains two L-xylulose reductases which occur in similar proportions to those of red cells but which migrate at slightly different rates. / WHSLYP2016
9

Importance of Mitochondrial NADPH Generating Enzymes for Longevity

Gong, Henry, Bradshaw, Patrick C 05 April 2018 (has links)
Reactive oxygen species (ROS), and the resulting oxidative stress caused by these species, have long been attributed to be one of the causes for aging and age related disorders. NADPH, the reduced form of nicotinamide adenine dinucleotide phosphate (NADP), provides a critical and essential buffer against cellular toxicity due to ROS. NADPH is one of the cells most powerful reducing agents, capable of regenerating other endogenous antioxidants such as glutathione from its oxidized form, glutathione disulfide. Consequently, it is hypothesized that declining NADPH levels with age results in a depletion in cellular capacity to respond to ROS induced damage, further accelerating the aging process. To study the importance of NADPH on the aging process as well as the molecular mechanisms involved, lifespan assays were performed using knockdown of various enzymes involved in the production of NADPH in Caenorhabditis elegans. Preliminary results indicate declining NADPH levels do have an effect on expected longevity. More interesting however, is a possibly important distinction between cytoplasmic and mitochondrial enzymes involved in the production of NADPH. These preliminary results suggest the existence of a previously undescribed molecular mechanism that is potentially important to the aging process. However, further experiments and analysis are required to further elucidate these mechanisms and to confirm preliminary findings.
10

Vliv abiotického stresu na metabolismus rostlin okurky (Cucumis sativa L.) / The effect of abiotic stress on cucumber plants (Cucumis sativa L.)

Plisková, Veronika January 2013 (has links)
The exposure of plants to high salt concentrations causes accumulation of sodium ions. This leads to the inability of the plants to uptake water, a disturbance of ion homeostasis, a decrease in photosynthesis and oxidative stress. As a result of the salt stress, the availability of NADPH decreases. The adaptation to the concentrations of salt depends on plant's ability to compensate for the decreased availability of NADPH, which can be further used in antioxidative cycles and the synthesis of antioxidative compounds and osmoprotectants. In this work, the reduction of relative water content, a decrease in the Rubisco enzyme activity, an increase of Hsp70 in the leaves and an increase in the accumulation of sodium ions was shown in cucumber plants (Cucumis sativa L. convar. Jogger F1) exposed to salt stress (100 mM NaCl). As a consequence of salt stress, an increase in the activity of NADPH providing enzymes was found. Particularly on the second and third day of salt stress, an increase in the activity (up to 270 %) of: NADP-isocitrate dehydrogenase, glucose-6-phosphate dehydrogenase, NADP-malic enzyme, non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase in leaves was detected. The activity of less abundant NADP-dehydrogenases (glucose 1-dehydrogenase, gluconate 2-dehydrogenase, galactose...

Page generated in 0.0215 seconds