• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Pretreatment of cellulosic waste and high rate biogas production

Aslanzadeh, Solmaz January 2014 (has links)
The application of anaerobic digestion technology is growing worldwide, mainly because of its environmental benefits. Nevertheless, anaerobic degradation is a rather slow and sensitive process. One of the reasons is the recalcitrance nature of certain fractions of the substrate (e.g., lignocelluloses) used for microbial degradation; thus, the hydrolysis becomes the rate-limiting step. The other reason is that the degradation of organic matter is based on a highly dynamic, multi-step process of physicochemical and biochemical reactions. The reactions take place in a sequential and parallel way under symbiotic interrelation of a variety of anaerobic microorganisms, which all together make the process sensitive. The first stage of the decomposition of the organic matter is performed by fast growing (hydrolytic and acid forming) microorganisms, while in the second stage the organic acids produced are metabolized by the slow growing methanogens, which are more sensitive than the acidogens; thus, methanogenesis becomes the rate-limiting step. The first part of this work evaluates the effects of a pretreatment using an organic solvent, N-methylmorpholine-N-oxide (NMMO), on cellulose-based materials in order to overcome the challenge of biomass recalcitrance and to increase the rate of the hydrolysis. NMMO-pretreatment of straw separated from the cattle and horse manure resulted in increased methane yields, by 53% and 51%, respectively, in batch digestion tests. The same kind of pretreatment of the forest residues led to an increase by 141% in the methane production during the following batch digestion assays. The second part of this work evaluates the efficacy of a two-stage process to overcome the second challenge with methanogenesis as the rate-limiting step, by using CSTR (continuous stirred tank reactors) and UASB (up flow anaerobic sludge blanket) on a wide variety of different waste fractions in order to decrease the time needed for the digestion process. In the two-stage semi-continuous process, the NMMO-pretreatment of jeans increased the biogas yield due to a more efficient hydrolysis compared to that of the untreated jeans. The results indicated that a higher organic loading rate (OLR) and a lower retention time could be achieved if the material was easily degradable. Comparing the two-stage and the single-stage process, treating the municipal solid waste (MSW) and waste from several food processing industries (FPW), showed that the OLR could be increased from 2 gVS/l/d to 10 gVS/l /d, and at the same time the HRT could be decreased from 10 to 3 days, which is a significant improvement that could be beneficial from an industrial point of view. The conventional single stage, on the other hand, could only handle an OLR of 3 gVS/l/d and HRT of 7 days.
2

High rate biogas production from waste textiles

Rajendran, Karthik, Balasubramanian, Gopinath January 2011 (has links)
Textile is a global product used by all people in the world. These textiles after the use are thrown into the trash for incineration or land filling. However an efficient way that can be used to produce more energy, in an environmentally friendly process is anaerobic digestion. Waste textiles which contain cellulosic fibers (e.g. Cotton and viscose) can be converted to biogas. In this study, the performance of a two-stage anaerobic digestion process for biogas production from four different materials, including untreated jeans, treated jeans, cotton, and starch was studied. Starch was used as an easy-to-digest material to compare its digestion with that of cellulosic materials.The two-stage processes were composed of a CSTR (for hydrolysis) and a UASB (for methanogenisis) which were investigated in two different configurations, namely (closed and open systems). In the closed system, the outlet of UASB was completely returned back to the CSTR, while in the open system the UASB outlet was sent to sewage. In a stepwise progress, the OLR was aimed to increase from 2 to 20 g Vs per L per day along with reduction in hydraulic retention time from 10 days to 1 day.The results showed that the closed system was more stable when compared to the open system. The pre-treatment of jeans by NMMO helped to produce methane as that of cotton. The hydraulic retention time was decreased to less than 9 days for treated jeans and less than 5 days for starch. The overall methane yield at OLR of 4 gVS per L per day for starch and treated jeans was 98.5% and 97.4% in the closed system, whereas in the open system the yield was 77.0% and 35.5%, respectively.Another experiment was conducted to compare the performance of two-stage process with that of a single stage process of anaerobic digestion of textiles containing polyester and cotton or viscose. Viscose textiles produced more gas compared to the cotton textile; it may be due to the higher crystalline of cotton which makes it hard to be degraded by the microorganisms. Furthermore, two-stage process could able to produce more methane than the single stage process.The parameters like total solids, volatile solids, pH, gas production, gas composition, concentration of nutrients, and COD were also analyzed for both of the experiments.

Page generated in 0.1067 seconds