• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ungeordnete Zahlpartitionen mit k Parts, ihre 2^(k - 1) Typen und ihre typspezifischen erzeugenden Funktionen

Lösch, Manfred 06 December 2012 (has links) (PDF)
Jede ungeordnete Zahlpartition mit k Parts (k-Partiton) hat einen Typ, der mittels einer geordneten Partition von k definiert werden kann. Es können somit 2^(k - 1) Typen definiert werden. Pro Typ gibt es eine eindeutig nummerierbare erzeugende Funktion der geschlossenen Form. Mit Rekursionen können diese Funktionen in (unendlich lange) Potenzreihen expandiert werden. Mit diesen erzeugenden Funktionen lassen sich Bijektionen zwischen den Partitionsmengen verschiedener Typen aufspüren.
2

Ungeordnete Zahlpartitionen mit k Parts, ihre 2^(k - 1) Typen und ihre typspezifischen erzeugenden Funktionen

Lösch, Manfred 06 December 2012 (has links)
Jede ungeordnete Zahlpartition mit k Parts (k-Partiton) hat einen Typ, der mittels einer geordneten Partition von k definiert werden kann. Es können somit 2^(k - 1) Typen definiert werden. Pro Typ gibt es eine eindeutig nummerierbare erzeugende Funktion der geschlossenen Form. Mit Rekursionen können diese Funktionen in (unendlich lange) Potenzreihen expandiert werden. Mit diesen erzeugenden Funktionen lassen sich Bijektionen zwischen den Partitionsmengen verschiedener Typen aufspüren.:1. Kurze Vorbetrachtung 2. Typen der ungeordneten k-Partitionen 3. Konstruktion der GF (generating function) des allgemeinen Typs 4. Nummerierung der konstruierten GF 5. Weitere Analysen zur konstruierten GF 6. Die konjugierten der typspezifischen k-Partitionen 7. Vereinfachte GF-Symbolik 8. Eine programmierbare Basis-GF 9. Dekomposition von Q(x, k) in typspezifische GF''s 10. Rekursives Expandieren typspezifischer GF''s 11. GF-Zerlegungen und Bijektionen 12. Zahlen, die in k-Partitionen aller Typen zerlegbar sind 13. Referenzen

Page generated in 0.1011 seconds