• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 53
  • 12
  • 9
  • 7
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 121
  • 30
  • 26
  • 20
  • 17
  • 13
  • 13
  • 12
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Thermo-mechanical analysis of non-pneumatic rubber tyres.

Harwood, Stephen January 1999 (has links)
This thesis is concerned with the design, analysis and optimisation of semi-solid or non- pneumatic tyres. More specifically, the thesis is intended to show how the FEA software package Abaqus can be used to determine whether or not an AirBoss tyre meets performance criteria in regards load/deformation criteria and if there is a likelihood of failure through overheating of the tyre during service.The work is intended to clearly explain the nature of natural rubber from a molecular description through to phenomenological descriptions used to solve for stresses, strains, creep and relaxation phenomena and temperature generation through hysteresis losses within the structure of the rubber compound.The thesis examines practical ways to obtain data for use in the analysis and describes test equipment (both "off-the-shelf" and purpose built) to obtain the required information.The objective is to progress, step by step, through the stages of analysis beginning with information to predict static loading conditions for the tyre. Viscoelastic behaviour, such as creep and relaxation are predicted and then tested to determine the correlation and refine test data before proceeding to the next stage of analysis.Ultimately, a prediction is made as to the temperature distribution throughout a section of the non-pneumatic tyre. A testing rig is described which has been built to test the analysis and enable a comparison to be made between FEA prediction and "real life".
32

An analysis of the seasonal and short-term variation of road pavement skid resistance

Wilson, Douglas James January 2006 (has links)
It has been well proven that as the skid resistance of a road surfacing decreases, the number of loss of control type crashes increases, causing road death and injuries. However, the management of skid resistance of road surfacings continues to be difficult due to the inherent and sometimes random variation in skid resistance levels over time. This study is an investigation and analysis of seasonal and short term variation of measured skid resistance in two phases. Phase 1: Regular field monitoring was undertaken using the GripTester and the Dynamic Friction Tester measurement devices on seven sites in the Auckland and Northland Regions of New Zealand was undertaken over a three year period. The effects of temperature, rainfall, contaminants, new surfacings, geometric elements and aggregate properties were analysed to investigate factors that initiate changes in the measured skid resistance of pavement surfacings. Phase 2: Laboratory prepared samples were constructed for accelerated polishing and skid resistance testing of four different aggregates (two greywackes, a basalt and an artificial iron-making melter slag aggregate). The samples were polished in an accelerated polishing machine to an ‘equilibrium skid resistance’ level (Stage 1 polishing). Contaminants were then added to the accelerated polishing process to determine the effect of varying additive, particle size and hardness in an attempt to simulate seasonal and/or short-term variations that occur in the field. The results have demonstrated that significant and previously unpredictable variations (greater than 30%) in measured skid resistance can occur over short time periods. These variations cannot be explained by any one factor. They are the result of a number of inter-related factors, including the geological properties of the aggregates and the contaminants themselves, the previous rainfall history, the road geometry, the calendar month of the year and (depending upon the measurement device), the temperature during testing. The laboratory tests demonstrate that accelerated polishing tests of aggregate samples could be prepared for testing by the Dynamic Friction Tester and that significant variations in measured skid resistance could be simulated on various aggregates in the laboratory by the addition of contaminants. The results of the testing and addition of contaminants on various aggregates resulted in significant behavioural differences which were related to the geological properties of the aggregates themselves, as well as the contaminants used in the accelerated polishing process. The findings of the research have specific relevance to three areas of industry; Road Controlling Authorities who are primarily interested in skid resistance policy, standards and management, Road Asset Managers who operate, maintain and manage condition level and the safety aspects of the road network and Crash Investigators who collect and analyse crash data primarily for legal proceedings. All three of these industry organisations need to clearly understand the inherent variability of skid resistance, the factors involved and the effects that geological and environmental variations have on skid resistance measurement. / Specific appreciation (as outlined below) is given to the significant industry partners/supporters that have helped support the research in many different ways. Firstly, I must give special thanks to Works Infrastructure Limited who have supported the research both financially and with resources almost from the outset of the research programme. The field testing data collection in the Northland Region of New Zealand would not have been possible without the support of the Whangarei Works Infrastructure team which included Peter Houba, Peter King, Matthew Findlay, Glen Kirk and the temporary traffic control team headed by Derek Phillips. Thanks also go to the Auckland Works Infrastructure testing laboratory which supplied aggregate supplies for laboratory sampling and testing and whose technicians also undertook Polished Stone Value tests on the aggregate samples. Special thanks are also given to Michael Haydon and David Hutchison from the technical management team of Works Infrastructure who have always been willing to listen to my requests and the many discussions that we have had on aspects of skid resistance, policy and technical matters. Pavement Management Services and especially Dr John Yeaman and Daniel Rich for their support for the research programme from the beginning, and secondly for financially contributing to the purchase of the Dynamic Friction Tester for the static field testing and the laboratory tests. Achnowledgement is also given to The Ports of Auckland and especially Jo Campbell of the AXIS Intermodal group that allowed access to the rail grid site as a field-testing site outside of normal port operation hours. Transit New Zealand head office staff (Mark Owen, David Cook and Chris Parkman) are also thanked for their support of the research and in enabling access to historic SCRIM and RAMM data on the Transit New Zealand state Highway network. Land Transport New Zealand (formerly Transfund New Zealand) are acknowledged for their significant financial support of the research, in terms of the Land Transport New Zealand Research project that allowed the field research data collection and analysis programme to continue for a further year and for the extension to the controlled laboratory testing.
33

An analysis of the seasonal and short-term variation of road pavement skid resistance

Wilson, Douglas James January 2006 (has links)
It has been well proven that as the skid resistance of a road surfacing decreases, the number of loss of control type crashes increases, causing road death and injuries. However, the management of skid resistance of road surfacings continues to be difficult due to the inherent and sometimes random variation in skid resistance levels over time. This study is an investigation and analysis of seasonal and short term variation of measured skid resistance in two phases. Phase 1: Regular field monitoring was undertaken using the GripTester and the Dynamic Friction Tester measurement devices on seven sites in the Auckland and Northland Regions of New Zealand was undertaken over a three year period. The effects of temperature, rainfall, contaminants, new surfacings, geometric elements and aggregate properties were analysed to investigate factors that initiate changes in the measured skid resistance of pavement surfacings. Phase 2: Laboratory prepared samples were constructed for accelerated polishing and skid resistance testing of four different aggregates (two greywackes, a basalt and an artificial iron-making melter slag aggregate). The samples were polished in an accelerated polishing machine to an ‘equilibrium skid resistance’ level (Stage 1 polishing). Contaminants were then added to the accelerated polishing process to determine the effect of varying additive, particle size and hardness in an attempt to simulate seasonal and/or short-term variations that occur in the field. The results have demonstrated that significant and previously unpredictable variations (greater than 30%) in measured skid resistance can occur over short time periods. These variations cannot be explained by any one factor. They are the result of a number of inter-related factors, including the geological properties of the aggregates and the contaminants themselves, the previous rainfall history, the road geometry, the calendar month of the year and (depending upon the measurement device), the temperature during testing. The laboratory tests demonstrate that accelerated polishing tests of aggregate samples could be prepared for testing by the Dynamic Friction Tester and that significant variations in measured skid resistance could be simulated on various aggregates in the laboratory by the addition of contaminants. The results of the testing and addition of contaminants on various aggregates resulted in significant behavioural differences which were related to the geological properties of the aggregates themselves, as well as the contaminants used in the accelerated polishing process. The findings of the research have specific relevance to three areas of industry; Road Controlling Authorities who are primarily interested in skid resistance policy, standards and management, Road Asset Managers who operate, maintain and manage condition level and the safety aspects of the road network and Crash Investigators who collect and analyse crash data primarily for legal proceedings. All three of these industry organisations need to clearly understand the inherent variability of skid resistance, the factors involved and the effects that geological and environmental variations have on skid resistance measurement. / Specific appreciation (as outlined below) is given to the significant industry partners/supporters that have helped support the research in many different ways. Firstly, I must give special thanks to Works Infrastructure Limited who have supported the research both financially and with resources almost from the outset of the research programme. The field testing data collection in the Northland Region of New Zealand would not have been possible without the support of the Whangarei Works Infrastructure team which included Peter Houba, Peter King, Matthew Findlay, Glen Kirk and the temporary traffic control team headed by Derek Phillips. Thanks also go to the Auckland Works Infrastructure testing laboratory which supplied aggregate supplies for laboratory sampling and testing and whose technicians also undertook Polished Stone Value tests on the aggregate samples. Special thanks are also given to Michael Haydon and David Hutchison from the technical management team of Works Infrastructure who have always been willing to listen to my requests and the many discussions that we have had on aspects of skid resistance, policy and technical matters. Pavement Management Services and especially Dr John Yeaman and Daniel Rich for their support for the research programme from the beginning, and secondly for financially contributing to the purchase of the Dynamic Friction Tester for the static field testing and the laboratory tests. Achnowledgement is also given to The Ports of Auckland and especially Jo Campbell of the AXIS Intermodal group that allowed access to the rail grid site as a field-testing site outside of normal port operation hours. Transit New Zealand head office staff (Mark Owen, David Cook and Chris Parkman) are also thanked for their support of the research and in enabling access to historic SCRIM and RAMM data on the Transit New Zealand state Highway network. Land Transport New Zealand (formerly Transfund New Zealand) are acknowledged for their significant financial support of the research, in terms of the Land Transport New Zealand Research project that allowed the field research data collection and analysis programme to continue for a further year and for the extension to the controlled laboratory testing.
34

An analysis of the seasonal and short-term variation of road pavement skid resistance

Wilson, Douglas James January 2006 (has links)
It has been well proven that as the skid resistance of a road surfacing decreases, the number of loss of control type crashes increases, causing road death and injuries. However, the management of skid resistance of road surfacings continues to be difficult due to the inherent and sometimes random variation in skid resistance levels over time. This study is an investigation and analysis of seasonal and short term variation of measured skid resistance in two phases. Phase 1: Regular field monitoring was undertaken using the GripTester and the Dynamic Friction Tester measurement devices on seven sites in the Auckland and Northland Regions of New Zealand was undertaken over a three year period. The effects of temperature, rainfall, contaminants, new surfacings, geometric elements and aggregate properties were analysed to investigate factors that initiate changes in the measured skid resistance of pavement surfacings. Phase 2: Laboratory prepared samples were constructed for accelerated polishing and skid resistance testing of four different aggregates (two greywackes, a basalt and an artificial iron-making melter slag aggregate). The samples were polished in an accelerated polishing machine to an ‘equilibrium skid resistance’ level (Stage 1 polishing). Contaminants were then added to the accelerated polishing process to determine the effect of varying additive, particle size and hardness in an attempt to simulate seasonal and/or short-term variations that occur in the field. The results have demonstrated that significant and previously unpredictable variations (greater than 30%) in measured skid resistance can occur over short time periods. These variations cannot be explained by any one factor. They are the result of a number of inter-related factors, including the geological properties of the aggregates and the contaminants themselves, the previous rainfall history, the road geometry, the calendar month of the year and (depending upon the measurement device), the temperature during testing. The laboratory tests demonstrate that accelerated polishing tests of aggregate samples could be prepared for testing by the Dynamic Friction Tester and that significant variations in measured skid resistance could be simulated on various aggregates in the laboratory by the addition of contaminants. The results of the testing and addition of contaminants on various aggregates resulted in significant behavioural differences which were related to the geological properties of the aggregates themselves, as well as the contaminants used in the accelerated polishing process. The findings of the research have specific relevance to three areas of industry; Road Controlling Authorities who are primarily interested in skid resistance policy, standards and management, Road Asset Managers who operate, maintain and manage condition level and the safety aspects of the road network and Crash Investigators who collect and analyse crash data primarily for legal proceedings. All three of these industry organisations need to clearly understand the inherent variability of skid resistance, the factors involved and the effects that geological and environmental variations have on skid resistance measurement. / Specific appreciation (as outlined below) is given to the significant industry partners/supporters that have helped support the research in many different ways. Firstly, I must give special thanks to Works Infrastructure Limited who have supported the research both financially and with resources almost from the outset of the research programme. The field testing data collection in the Northland Region of New Zealand would not have been possible without the support of the Whangarei Works Infrastructure team which included Peter Houba, Peter King, Matthew Findlay, Glen Kirk and the temporary traffic control team headed by Derek Phillips. Thanks also go to the Auckland Works Infrastructure testing laboratory which supplied aggregate supplies for laboratory sampling and testing and whose technicians also undertook Polished Stone Value tests on the aggregate samples. Special thanks are also given to Michael Haydon and David Hutchison from the technical management team of Works Infrastructure who have always been willing to listen to my requests and the many discussions that we have had on aspects of skid resistance, policy and technical matters. Pavement Management Services and especially Dr John Yeaman and Daniel Rich for their support for the research programme from the beginning, and secondly for financially contributing to the purchase of the Dynamic Friction Tester for the static field testing and the laboratory tests. Achnowledgement is also given to The Ports of Auckland and especially Jo Campbell of the AXIS Intermodal group that allowed access to the rail grid site as a field-testing site outside of normal port operation hours. Transit New Zealand head office staff (Mark Owen, David Cook and Chris Parkman) are also thanked for their support of the research and in enabling access to historic SCRIM and RAMM data on the Transit New Zealand state Highway network. Land Transport New Zealand (formerly Transfund New Zealand) are acknowledged for their significant financial support of the research, in terms of the Land Transport New Zealand Research project that allowed the field research data collection and analysis programme to continue for a further year and for the extension to the controlled laboratory testing.
35

An analysis of the seasonal and short-term variation of road pavement skid resistance

Wilson, Douglas James January 2006 (has links)
It has been well proven that as the skid resistance of a road surfacing decreases, the number of loss of control type crashes increases, causing road death and injuries. However, the management of skid resistance of road surfacings continues to be difficult due to the inherent and sometimes random variation in skid resistance levels over time. This study is an investigation and analysis of seasonal and short term variation of measured skid resistance in two phases. Phase 1: Regular field monitoring was undertaken using the GripTester and the Dynamic Friction Tester measurement devices on seven sites in the Auckland and Northland Regions of New Zealand was undertaken over a three year period. The effects of temperature, rainfall, contaminants, new surfacings, geometric elements and aggregate properties were analysed to investigate factors that initiate changes in the measured skid resistance of pavement surfacings. Phase 2: Laboratory prepared samples were constructed for accelerated polishing and skid resistance testing of four different aggregates (two greywackes, a basalt and an artificial iron-making melter slag aggregate). The samples were polished in an accelerated polishing machine to an ‘equilibrium skid resistance’ level (Stage 1 polishing). Contaminants were then added to the accelerated polishing process to determine the effect of varying additive, particle size and hardness in an attempt to simulate seasonal and/or short-term variations that occur in the field. The results have demonstrated that significant and previously unpredictable variations (greater than 30%) in measured skid resistance can occur over short time periods. These variations cannot be explained by any one factor. They are the result of a number of inter-related factors, including the geological properties of the aggregates and the contaminants themselves, the previous rainfall history, the road geometry, the calendar month of the year and (depending upon the measurement device), the temperature during testing. The laboratory tests demonstrate that accelerated polishing tests of aggregate samples could be prepared for testing by the Dynamic Friction Tester and that significant variations in measured skid resistance could be simulated on various aggregates in the laboratory by the addition of contaminants. The results of the testing and addition of contaminants on various aggregates resulted in significant behavioural differences which were related to the geological properties of the aggregates themselves, as well as the contaminants used in the accelerated polishing process. The findings of the research have specific relevance to three areas of industry; Road Controlling Authorities who are primarily interested in skid resistance policy, standards and management, Road Asset Managers who operate, maintain and manage condition level and the safety aspects of the road network and Crash Investigators who collect and analyse crash data primarily for legal proceedings. All three of these industry organisations need to clearly understand the inherent variability of skid resistance, the factors involved and the effects that geological and environmental variations have on skid resistance measurement. / Specific appreciation (as outlined below) is given to the significant industry partners/supporters that have helped support the research in many different ways. Firstly, I must give special thanks to Works Infrastructure Limited who have supported the research both financially and with resources almost from the outset of the research programme. The field testing data collection in the Northland Region of New Zealand would not have been possible without the support of the Whangarei Works Infrastructure team which included Peter Houba, Peter King, Matthew Findlay, Glen Kirk and the temporary traffic control team headed by Derek Phillips. Thanks also go to the Auckland Works Infrastructure testing laboratory which supplied aggregate supplies for laboratory sampling and testing and whose technicians also undertook Polished Stone Value tests on the aggregate samples. Special thanks are also given to Michael Haydon and David Hutchison from the technical management team of Works Infrastructure who have always been willing to listen to my requests and the many discussions that we have had on aspects of skid resistance, policy and technical matters. Pavement Management Services and especially Dr John Yeaman and Daniel Rich for their support for the research programme from the beginning, and secondly for financially contributing to the purchase of the Dynamic Friction Tester for the static field testing and the laboratory tests. Achnowledgement is also given to The Ports of Auckland and especially Jo Campbell of the AXIS Intermodal group that allowed access to the rail grid site as a field-testing site outside of normal port operation hours. Transit New Zealand head office staff (Mark Owen, David Cook and Chris Parkman) are also thanked for their support of the research and in enabling access to historic SCRIM and RAMM data on the Transit New Zealand state Highway network. Land Transport New Zealand (formerly Transfund New Zealand) are acknowledged for their significant financial support of the research, in terms of the Land Transport New Zealand Research project that allowed the field research data collection and analysis programme to continue for a further year and for the extension to the controlled laboratory testing.
36

A proposed strategy for the implementation of total productive maintenance at Continental Tyre South Africa

Olivier, Christie January 2007 (has links)
For a tyre manufacturing company to compete nationally and internationally, the maximum utilization of their equipment is extremely important. Thus, having a maintenance system in place that will ensure this will be essential. In today’s competitive environment, the need to go further than just scheduling maintenance in accordance with manufacturer’s recommendations as a method of improving productivity and product quality was quickly recognized by those companies who were committed to total quality management programmes. The objective of this study was to propose an appropriate strategy for the implementation of Total Productive Maintenance at Continental Tyre South Africa. To achieve this, the current Total Productive Maintenance (TPM) programme, in the steel stock preparation division in affiliated Continental plants in Otrokovice in the Czech Republic and Puchov in the Slovak Republic was evaluated. A comprehensive literature study was performed on Total Productive Maintenance programmes. A questionnaire was designed based on the guidelines in the literature study in order to establish the effectiveness of implemented TPM programmes. The researcher used the random sampling method of selection and distributed the questionnaire to 62 potential respondents via hand-outs from each plant’s respective heads of departments. 56 completed questionnaires were returned and these were processed and analyzed using Microsoft Office Excel 2003, running on the Windows XP suite of computer packages. The opinions of the various respondents were compared with the guidelines provided in the literature survey, in order to identify how to answer two main questions the author wanted to use as part of selecting an appropriate implementation approach for TPM at Continental Tyre South Africa. These were: • How much are the employees involved and empowered to perform their TPM tasks?; and • How effective is the implemented TPM programme? The following were the main recommendations and conclusions: • The experiences gained by plants like Otrokovice and Puchov must be used as a guideline for introduction and implementation; • The employees that will be required to perform the TPM tasks must be properly trained and they should receive the necessary tools to perform their tasks; • It is essential that everyone throughout the entire manufacturing organization is involved from the start in the development, improvement and maintenance of the TPM programme and that the driving force behind it should be a combination of maintenance, production and quality; and • TPM will achieve it’s objectives if: • The equipment effectiveness can be improved; • Autonomous maintenance is achieved; • Planned maintenance is in place; • Staff are trained in relevant maintenance skills; and • Early equipment management can be achieved.
37

Tyre model verification over off-road terrain

Stallmann, M.J. (Martin Joachim) January 2013 (has links)
Vehicle dynamic simulations form a significant part of the design and development process of vehicles. These simulations are used to study and improve the vehicle’s durability, ride comfort and handling capabilities. All forces acting on the vehicle are either generated in the tyre-road interface or are due to aerodynamic effects, where at low speeds the latter one can be ignored. The accuracy of the tyre model describing the forces on the tyre-road interface is thus of exceptional importance. It ensures that the simulation model is an accurate representation of the actual vehicle. Various approaches are adopted when developing mathematical tyre models. Many of these models are developed to study the handling capabilities of passenger cars over a smooth road. Passenger car tyres are the focal point as larger tyres introduce some difficulties due to their size and load rating. Off-road truck tyres also differ in their construction which will influence force and moment generation of the tyre. Research efforts are increasing to meet the need of tyre models that can describe the behaviour of the tyre over uneven terrain with sufficient accuracy. This thesis addresses the question of whether existing mathematical tyre models can accurately describe the forces and moments generated by a large off-road tyre while driving over rough terrain. The complexity of different mathematical tyre models varies greatly, as does the parameterisation efforts required to obtain the model parameters. The parameterization of most tyre models relies on some experimental test data that is used to extract the necessary information to fit model parameters. The selection of a suitable tyre model for a simulation is often dependent on the availability of such experimental data and the effort to identify the required parameters. In this study the parameterisation process for four different tyre models, are discussed in detail to highlight the difficulties in acquiring the test data and the effort to parameterize the model. The models considered are the One Point Contact, 3D Equivalent Volume contact, 3D Enveloping Contact and FTire model. Experimental measurements are conducted on a 16.00R20 Michelin XZL tyre. Laboratory tests, as well as field tests, over discrete obstacles and uneven hard surfaces are used for parameterisation and validation purposes. Simulation results are compared to experimental test data to determine whether the models could be used to describe the tyre road interactions with sufficient accuracy. Recommendations are made for tyre model selection and model accuracy for simulations over rough off-road surfaces. / Dissertation (MEng)--University of Pretoria, 2013. / gm2014 / Mechanical and Aeronautical Engineering / unrestricted
38

Modified lignin as replacement of carbon black in elastomers- For the development of sustainable tyre technology : The substitution of carbon black with modified lignin- Green tyre technology / Ersättningen av kimrök med modifierad lignin i bildäcksgummi-  För utvecklandet av grönare bildäcksteknologi

Ahmed Ismail, Mostafa January 2020 (has links)
Due to its large flexibility, low-price, large availability, and properties lignin is seen as an important compound with a wide range of applications. The increasing demand of fossil-based rubber materials is causing a serious threat to the environment and it is contributing to plastic- and marine pollution, ozone depletion and carbon dioxide emission (CO2) [1,2]. Numerous toxicological researches highlight that Carbon black may act as a universal carrier of wide variety of chemicals of varying toxicity to the human body [3,4]. Consequently, researcher endeavours in finding sustainable and eco-friendlier alternatives. The aim of this thesis was to further investigate the possibilities of replacing carbon black with modified lignin in rubber elastomeric materials- for the development of sustainable tyre technology. The research questions for this thesis were divided in four parts:   How does lignin (unmodified and modified) structure affect the mechanical properties of the rubber compound? How does lignin affect the cross-link and vulcanisation of the rubber compound? How does lignin affect the dispersion of the rubber compound? Which modification of lignin is more compatible with the rubber compound? Lignin is the second most abundant biopolymer on earth (after cellulose) and is mainly extracted from black liquor, which is obtained as a by-product from the pulp- and paper. In this study, pure lignin was obtained from Lignoboost process (Lignocity) and underwent an esterification process of aldehydes (1. Protonic, 2. Butyric, 3. Isobutyric 4. Methacrylic and 5. Crotonic). LignoCity 2.0 is a project focusing on the development of sustainable products and processes connected to lignin. The structure of the modified lignin was characterized using a FTIR-spectra. Furthermore, seven different rubber compounds were produced at Anva Poly Tech, which is a company that manufactures rubber materials in Sunne, Sweden. The mechanical testing involved: Tensile strength, IRHD, Hardness, Rebound Resilience and Rheometer curve. It was observable that the addition of lignin in rubber compounds did not significantly improve the mechanical properties compared to conventional carbon black. However, the rheometer curves of the lignin samples clearly indicate an increase in scorch time and that lignin takes part in the vulcanization process, thus the delay in crosslinking phase.  In addition, it was visible that the fully replacement of carbon black with lignin (unmodified and modified) increased the elongation at break. Furthermore, the FTIR spectra indicated a complete and successful modification of lignin. In addition, compared to unmodified lignin, it was visible that the modified lignin significantly improved the mechanical properties. Therefore, it was possible to conclude that the configuration and double bonds of the aldehydes had an impact on the vulcanization process. Butyric and isobutyric lignin were the better choices compared to the other lignin samples. / De rådande miljöproblemen som: plast- och gummiutsläpp i havet, växthusgasutsläppet och den ekologiska utarmningen i kombination med den ökande efterfrågan av fossilbaserade material har lett till en ökad satsning på att hitta mer hållbara och miljövänligare alternativ [1, 2]. Kimrök i gummimaterial utgör en del hälsorisker och samtidigt har negativ påverkan på miljön. Flertals studier visar att långtidsexponering av kimrök kan ge allvarliga lungproblem och även cancer [3,4]. På grund av dess stora tillgänglighet, låga kostnad och unika egenskaper anses lignin vara en möjlig och intressant framtidskandidat för ersättande av fossila produkter. Syftet med denna studie var att undersöka möjligheterna om att ersätta kimrök med modifierad lignin i gummimaterial för utvecklandet av ’grönare däckteknologi’. Frågeställningarna i detta arbete var uppställda i fyra i olika delar: Hur påverkar tillsättningen av lignin (omodifierad och modifierad) gummiblandningens mekaniska egenskaper? Hur påverkar tillsättningen av lignin tvärbindningarna och vulkningen i gummiblandningen? Hur påverkas tillsättningen av lignin gummiblandningars dispersion? Vilken modifikation av lignin är mest kompatibel med gummimaterialet? Lignin är en organisk biopolymer som är den näst mest (efter cellulosa) förekommande biomassan i naturen och produceras som en biprodukt från pappers- och massa industrin. Ren lignin erhålls genom extraktion från svartlut med diverse isolations metoder. I detta arbete erhölls lignin genom Lignoboost processen från Lignocity.  Lignocity 2.0 är ett projekt som syftar till att utveckla, kommersiella och effektivisera hållbara processer och produkter med fokus på lignin. I detta arbete modifierades ligninet genom en s.k. esterfierings process av fem olika aldehyder 1.Propionic, 2. Butyric, 3. Isobutyric, 4. Methacrylic och 5. Crotonic som sedan undersöktes i en FTIR-spektra. Sju olika gummiblandningar skapades (inklusive ett gummi som endast innehöll kimrök och ett gummi som ej innehöll kimrök eller lignin). Gummiblandningarnas mekaniska egenskaper undersöktes på följande sätt: Dragstyrka, IRHD (Hårdhet), Hårdhet, studselasticiteten och reometrisk karaktärisering De ligninbaserade gummiblandningarna gav ingen signifikant förbättring i de mekaniska egenskaperna. Dock visade den reometriska kurvan att tillsättning av lignin gav en ökning i bränntid samt att ligninet gav en förskjutning i tvärbindningsfasen. Vidare gav den reometriska kurvan en indikation på att ligninet deltog i vulkaniseringsprocessen. Isobutyric lignin hade den högsta bränntiden. Det var även bevisat att tillsättningen av lignin gav en ökning i töjning. Modifieringen av lignin gav en signifikant förbättring av de mekaniska egenskaperna jämfört med omodifierad lignin. FTIR-spektrumet av ligninproven indikerade på en lyckad modifiering och koppling av aldehydgrupperna. Trots att de ligninbaserade gummiblandningarna inte förbättrade de mekaniska egenskaperna så kunde intressanta kopplingar mellan aldehydens konfigurationer, dubbelbindningar och vulkaniserings processen göras. Butyric och isobutyric visade bäst resultat jämfört de andra ligninproven.
39

Investigation of noise and disturbance from vehicles crossing cattle grids and examination of options for mitigation

Watts, Gregory R., Pheasant, Robert J., Khan, Amir 16 September 2016 (has links)
Yes / Cattle grids are used on roads and tracks to prevent grazing animals from leaving an open space without fencing onto a more controlled area where access to the road from surrounded land is more limited. They are widely used in the UK at the entrances to common and moorland areas where animals are free to roam, but also on private drive entrances. Typically, they consist of a series of metal bars across the road that are spaced so that an animal’s legs would fall through the gaps if it attempted to cross. Below the grid is a shallow pit that is intended to further deter livestock from using that particular crossing point. The sound produced as vehicles cross these devices is a characteristic low frequency “brrrr” where the dominant frequencies relates to the bar passage frequency under the tyres. The sound can be disturbing to riders and their horses and walkers and residents living close by as evidenced by press reports and the need to consider noise aspects in planning for new installations. For this reason and due to the lack of available information on the size and nature of the problem measurements and recordings have been made at a number of sites in Yorkshire in the UK. In addition, questionnaire surveys of residents living close by and façade measurements have also been used to gauge impact. Results show that there is a wide variation in the maximum noise level produced by cattle grids of apparently similar design. This can be related to impact noise produced by the movement of all or part of the grid as the frame comes under impulsive loading as the vehicle crosses. It was further established that some residents living close to the cattle grids were disturbed by the noise, and in some cases vibration, and wanted them removed or suitably modified. Means of reducing the problem are proposed.
40

Enhancing circular economy and sustainable environmental practices: opportunities and challenges of tyre pyrolysis in Africa

Attah-Boakye, R., Hernandez-Perdomo, E., Tooke, M., Yu, H., Adams, Kweku 11 January 2023 (has links)
Yes / Studies estimate that Africa's urban population is expected to triple over 40 years, from 395 million in 2010 to 1.339 billion in 2050. Challenges associated with increasing urbanisation and the rise of large cities in the African sub-region represent critical challenges to the environment and the rich ecosystem. The growing population, particularly in most cities in Africa, has resulted in increasing demand for non-degradable consumable waste products, changes in lifestyle and consumption patterns, and rising demand for transportation and associated solid waste disposal problems, especially tyre waste. However, few studies have examined circular economy practices such as tyre pyrolysis to attenuate Africa's ever-increasing waste disposal challenges. Moreover, most of these studies failed to account for specific risk-based decision-making attributes in an integrated way, such as technology readiness, risk identification, carbon footprint analysis, supply chain and procurement factors, and financial risk quantification. As a result, to the best of our knowledge and understanding, research-based tyre recycling feasibility practices are limited and scattered. We contribute to the literature by providing systematic literature on tyre pyrolysis in Africa from 2008-2022 inclusive, covering 16 African countries. To address tyre waste in Africa, this chapter provides a 10-point strategy on how pyrolysis can be integrated into production plants and associated businesses to minimise tyre waste in Africa. / The full-text of this article will be released for public view at the end of the publisher embargo on 29 July 2025.

Page generated in 0.0344 seconds