• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 6
  • 1
  • Tagged with
  • 15
  • 15
  • 15
  • 12
  • 12
  • 11
  • 10
  • 8
  • 8
  • 8
  • 8
  • 6
  • 6
  • 6
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Système de recombinaison Xer chez Staphylococcus aureus

Gustinelli, Alexandra 08 1900 (has links)
Le système de recombinaison Xer est impliqué dans la monomerisation des réplicons bactériens, comme les plasmides et les chromosomes, dans une grande variété de bactéries. Ce système est un système de recombinaison site-spécifique composé de deux tyrosine recombinases, soit XerC et XerD. Ils agissent ensemble afin de convertir les chromosomes dimériques en monomères en agissant à un site spécifique près du terminus de la réplication, appelé le site dif. Les gènes Xer et leur site d’action sont identifiés dans plusieurs bactéries gram positives et gram négatives. Staphylococcus aureus représente une bactérie gram positive qui contient un système XerCD/dif. Elle est impliqué dans plusieurs maladies humaines, tels que des infections cutanées, des gastroentérites, et le syndrome de choc toxique, pour en nommer quelques unes. Bien que les gènes codant les protéines XerC et XerD ont été identifiés, il y a beaucoup d’inconnu sur leur mode d’action au site dif. Des mutations dans XerC ont été obtenues, mais aucune dans XerD, suggérant que ce gène pourrait être essentiel pour cet organisme. Les études présentées dans ce mémoire ont permis de commencer à mieux caractériser XerD de S. aureus, en séquençant le gène et en faisant des tests de liaison à l’ADN. Elles ont montré que la recombinase XerD se lie au site dif d’Eschericia coli seul et de façon coopérative avec la recombinase XerC d’E. coli. XerD de S. aureus est, aussi, efficace dans la complémentation de XerD muté d’E. coli dans la réaction de recombinaison chromosomique. Cependant, elle ne démontre pas cette même capacité de complémentation lors de la recombinaison plasmidique aux sites cer. / The Xer recombination system is involved in the monomerisation of bacterial replicons, such as plasmids and chromosomes, in a wide variety of bacteria. This system is a site-specific recombination system comprised of two tyrosine recombinases, XerC and XerD, which act in concert to convert dimeric chromosomes to monomers by acting at a specific site near the terminus of replication called the dif site. Xer genes and their site of action have been identified in many gram positive and gram negative bacteria. Staphylococcus aureus represents a gram positive bacterium containing a XerCD/dif system. It is a bacteria implicated in many human diseases, such as skin infections, gastroenteritis and toxic shock syndrome, to name a few. Although the genes encoding the XerC and XerD proteins have been identified, not much is known about their mode of action on the dif site. Mutations in xerC have been obtained, but none in xerD, suggesting that this gene may be essential for this organism. The work presented in this paper has allowed us to better understand the XerD protein of S. aureus, not only in the sequencing of the xerD gene but also in the performing of DNA binding assays. It has been shown that XerD binds to the dif site of E. coli, not only alone but also in cooperativity with E. coli XerC. S. aureus XerD is also capable of complementing the mutated XerD protein in E. coli when it comes to chromosomal recombination. However, it does not demonstrate this same ability to complement XerD regarding recombination at the plasmidic cer sites.
12

Le système de recombinaison site-spécifique dif/Xer de Campylobacter jejuni

Rezoug, Zoulikha 12 1900 (has links)
Chez les bactéries à chromosome circulaire, la réplication peut engendrer des dimères que le système de recombinaison site-spécifique dif/Xer résout en monomères afin que la ségrégation des chromosomes fils et la division cellulaire se fassent normalement. Ses composants sont une ou deux tyrosines recombinases de type Xer qui agissent à un site de recombinaison spécifique, dif, avec l’aide de la translocase FtsK qui mobilise l’ADN au septum avant la recombinaison. Ce système a été d’abord identifié et largement caractérisé chez Escherichia coli mais il a également été caractérisé chez de nombreuses bactéries à Gram négatif et positif avec des variantes telles que les systèmes à une seule recombinase comme difSL/XerS chez Streptococcus sp et Lactococcus sp. Des études bio-informatiques ont suggéré l’existence d’autres systèmes à une seule recombinase chez un sous-groupe d’ε-protéobactéries pathogènes, dont Campylobacter jejuni et Helicobacter pylori. Les acteurs de ce nouveau système sont XerH et difH. Dans ce mémoire, les premières recherches in vitro sur ce système sont présentées. La caractérisation de la recombinase XerH de C. jejuni a été entamée à l’aide du séquençage de son gène et de tests de liaison et de clivage de l’ADN. Ces études ont montré que XerH pouvait se lier au site difSL de S. suis de manière non-coopérative : que XerH peut se lier à des demi-sites de difSL mais qu’elle ne pouvait, dans les conditions de l’étude effectuer de clivage sur difSL. Des recherches in silico ont aussi permis de faire des prédictions sur FtsK de C. jejuni. / DNA replication can form dimers in bacteria harboring a circular chromosome. The dif/Xer recombination system resolves monomers them so that chromosome segregation and cell division take place normally. This system is composed of one or two tyrosine recombinases that act at a specific recombination site, dif, with the help of the FtsK translocase that mobilises DNA to the septum before recombination. The Xer system has been first identified and widely characterized in Escherichia coli where XerC and XerD are the recombinases. The system has been found and studied in many other Gram negative and positive bacteria. A different form, carrying a single recombinase acting on an atypical site, has been identified in Streptococci and Lactococci, difSL/XerS. In silico studies suggested the existence of other single recombinase systems in a sub-group of pathogenic ε-proteobacteriasuch as Campylobacter jejuni and Helicobacter pylori. The components of this system were identified as XerH and difH. In this thesis, the first in vitro studies made on this system are presented. The characterization of the XerH recombinase of C. jejuni started with the sequencing of its gene and with the DNA binding and cleavage assays. These studies showed that XerH could bind difSL of S. suis non-cooperatively, that it could bind difSL half-sites and that it was unable to perform cleavage on difSL. Also, in silico comparisons permitted predictions on FtsK of C. jejuni.
13

Caractérisation biochimique, fonctionnelle et structurale de l'integrase Pf-Int de plasmodium.

Ghorbal, Mehdi 28 February 2012 (has links) (PDF)
Plasmodium falciparum est un parasite protozoaire responsable de la forme la plus sévère de la malaria. Depuis quelques années, les cas de résistance aux antipaludiques sont devenus de plus en plus fréquents et de plus en plus répandus. En plus de sa résistance aux drogues actuellement disponibles, ce parasite reste jusqu' à aujourd'hui réfractaire aux vaccinations. L'identification de nouvelles approches basées sur l'inhibition spécifique de certaines de ses cibles moléculaires vitales est devenue une nécessité. La recombinase à site spécifique de P. falciparum (Pf-Int) est un enzyme qui a été récemment identifié dans le laboratoire à partir de PlasmoDB. Cette recombinase à site spécifique joue potentiellement un rôle clé dans le système de recombinaison nécessaire à la viabilité du parasite. Cette protéine de 490 acides aminés, soit ~57 kDa, contient une région C-terminale qui porte les résidus conservés du site catalytique des recombinases à tyrosine R-H-K-R-(H/W)-Y. La prédiction montre une région N-terminale qui ressemble à celle de l'intégrase du phage lambda avec un mélange de structures secondaires α et β.Lors de ces travaux, nous avons d'abord montré par RT-PCR que le gène (MAL13P1.42) qui code pour PF-Int est transcrit pendant le cycle intra-érythrocytaire avec un maximum pendant la phase schizont. Nous avons ensuite essayé de montrer l'implication de Pf-Int dans le cycle parasitaire. Ceci a été réalisé grâce à un parasite (KO: knock-out) dont le gène Pf-Int a été invalidé. Ces analyses montrent que Pf-Int n'a aucun impact apparent sur le cycle de développement intra-érythrocytaire du parasite, en particulier sur la durée du cycle et le taux de croissance. Au niveau moléculaire, nous avons également procédé à la production d'anticorps anti-Pf-Int en utilisant le fragment C-162 (Résidus 162-490). La comparaison des profils de marquage, par cet anticorps, des extraits protéiques du KO et du parasite sauvage par la technique de Western blot n'a pas permis d'identifier la protéine endogène dans le parasite sauvage. Dans le but de déterminer la localisation sub-cellulaire de Pf-Int, nous avons réalisé des essais de sur-expression de différentes protéines de fusion dans le parasite. Nous avons essayé de déterminer l'impact de trois codons d'initiation différents ainsi que l'impact de la présence de la région N-terminale (1-190aa) de Pf-Int sur sa localisation subcellulaire en utilisant une chimère entre la partie N-terminale et la protéine GFP. Lors de ces travaux, nous avons réussi à sur-exprimer différentes régions de Pf-Int sous forme recombinante dans E. coli. Nous l'avons d'abord caractérisé par des études biophysiques. Ainsi nous avons pu déterminer, par dichroïsme circulaire (CD), le contenu en structures secondaires de Pf-Int, qui est proche de celui des autres membres de la même famille. Nous avons également démontré sa stabilité par CD couplé à la dénaturation thermique. Le spectre RMN-1D a aussi pu être enregistré. La troisième partie de nos travaux a concerné l'identification des cibles ADN de Pf-Int. Deux stratégies de recherche de cibles par affinité ont été utilisées au laboratoire en utilisant une première bibliothèque de séquences synthétisées chimiquement et une deuxième bibliothèque formée de fragments d'ADN génomique de P. falciparum. Ces deux approches ont permis l'identification de deux séries de cibles ADN. Grace aux cibles ADN identifiées, nous avons pu démontrer l'interaction de différents fragments de Pf-Int avec ces cibles par des expériences de retard sur gel natif (EMSA). Nous avons aussi pu démontrer que les protéines recombinantes sont actives in vitro. En effet, ces dernières sont capables de former des complexes covalents en présence de l'ADN cible. La conservation de la protéine, ainsi que son expression différentielle nous laisse à penser que son rôle est certes loin d'être élucidé, mais que Pf-Int reste une cible potentielle pour P. falciparum.
14

Les systèmes Xer à une seule recombinase

Leroux, Maxime 11 1900 (has links)
Les dimères chromosomiques se produisant lors de la réparation de chromosomes circulaires peuvent être dommageables pour les bactéries en bloquant la ségrégation des chromosomes et le bon déroulement de la division cellulaire. Pour remédier à ce problème, les bactéries utilisent le système Xer de monomérisation des chromosomes. Celui-ci est composé de deux tyrosine recombinases, XerC et XerD, qui vont agir au niveau du site dif et procéder à une recombinaison qui aura pour effet de séparer les deux copies de l’ADN. Le site dif est une séquence d’ADN où deux répétitions inversées imparfaites séparées par six paires de bases permettent la liaison de chacune des recombinases. Cette recombinaison est régulée à l’aide de FtsK, une protéine essentielle de l’appareil de division. Ce système a été étudié en profondeur chez Escherichia coli et a aussi été caractérisée dans une multitude d’espèces variées, par exemple Bacillus subtilis. Mais dans certaines espèces du groupe des Streptococcus, des études ont été en mesure d’identifier une seule recombinase, XerS, agissant au niveau d’un site atypique nommée difSL. Peu de temps après, un second système utilisant une seule recombinase a été identifié chez un groupe des epsilon-protéobactéries. La recombinase fut nommée XerH et le site de recombinaison, plus similaire à difSL qu’au site dif classique, difH. Dans cette thèse, des résultats d’expériences in vitro sur les deux systèmes sont présentés, ainsi que certains résultats in vivo. Il est démontré que XerS est en mesure de se lier de façon coopérative à difSL et que cette liaison est asymétrique, puisque XerS est capable de se lier à la moitié gauche du site prise individuellement mais non à la moitié droite. Le clivage par XerS est aussi asymétrique, étant plus efficace au niveau du brin inférieur. Pour ce qui est de XerH, la liaison à difH est beaucoup moins coopérative et n’a pas la même asymétrie. Par contre, le clivage est asymétrique lui aussi. La comparaison de ces deux systèmes montrent qu’ils ne sont pas homologues et que les systèmes Xer à seule recombinase existent sous plusieurs versions. Ces résultats représentent la première découverte d’un espaceur de 11 paires de bases chez les tyrosine recombinases ainsi que la première étude in vitro sur XerH. / The chromosome dimers produced during the repair of circular chromosomes can be harmful to bacteria by blocking the segregation of the chromosome and cell division. To overcome this problem, bacteria use the Xer system for the monomerisation of chromosome dimers. It has two components, XerC and XerD, which act on the dif site and complete a recombination that will lead to the separation of the two copies of the DNA. The dif site is a DNA sequence where two imperfect inverted repeats separated by six base pairs allow the binding of each recombinase. This recombination is regulated by the protein FtsK, an essential member of the cell division machinery. The Xer system has been well studied in Escherichia coli and has also been characterized in a variety of species, for example Bacillus subtilis. Furthermore, in certain species of Streptococcus, studies have identified only a single recombinase, XerS, which acts on an atypical site named difSL in order to monomerize dimeric chromosomes. Not long after, a second system using a single recombinase was identified in a group of epsilon-proteobacteria. This recombinase was named XerH and the recombination site, difH, was found to more similar to difSL than to the classical dif sites. In this thesis, results from in vitro experiments on both systems are presented, as well as some results from in vivo experiments. We show that XerS is capable of binding cooperatively to difSL and that this binding is asymmetrical. This is because XerS is able to bind to the left half of the site but not to the right half when they are separated. The cleavage by XerS is also asymmetrical, as it is more efficient on the bottom strand. As for XerH, its binding to difH is much less cooperative and doesn’t have the same asymmetry. But the cleavage is also asymmetrical like the one seen in XerS. Comparing the two systems show that they are not homologuous and that more than one version of Xer systems using a single recombinase exists. These results represent the first discovery of an 11 bases pairs spacer for tyrosine recombinase. It is also the first in vitro studies of XerH.
15

Structural stability of the integron synaptic complex

Vorobevskaia, Ekaterina 03 May 2024 (has links)
The predominant tool for adaptation in Gram-negative bacteria is a genetic system called integron. It rearranges gene cassettes, promoting multiple antibiotic resistances, a recognized major global health threat. It is based on a unique recombination process involving a Tyrosine recombinase – called integrase IntI – and folded single-stranded DNA hairpins – called attC sites. Four recombinases and two attC sites form a macromolecular synaptic complex, which is key to the entire recombination process and the focus of our study. The bottom strand of all attC sites shows highest recombination in vivo, however, it still varies greatly and the underlying reason is unknown. We hypothesize that the difference in recombination efficiency arises from the variable mechanical stability of the synaptic complex, which in turn is affected by the attC site. Here, we established an optical tweezers force-spectroscopy assay that allows us to probe the synaptic complex stability for different DNA substrates and protein variants. We discovered a strong correlation between recombination efficiency and the mechanical stability of the synapse, indicating a regulatory mechanism from the DNA sequence to the quaternary complex structure stability. We have discovered protein residues interacting with the DNA in trans, within the synaptic complex, which reduces its stability. Furthermore, we discovered that the C-terminal helix, a conserved structural feature of tyrosine recombinases plays a key role in the stabilization of the tetramer assembly on the DNA, which upon mutation significantly destabilized the synaptic complex. Expanding upon this new understanding of synapse stability regulation we developed a novel approach for destabilizing the synaptic complex, potentially reducing the recombination efficiency. We designed α-helix mimicking peptides that would compete with the C-terminal tail of the integrase, block the interlocking interaction, and lead to synaptic complex destabilization. We have observed a prominent destabilizing effect on the synaptic complex already at 10 µM peptide concentration. Overall, our findings reveal new regulatory mechanisms in the recombination efficiency of the bacterial integron and provide first data for the active synapse destabilization mechanism. This novel understanding of the regulatory role the synaptic complex plays in the recombination efficiency of the integron system introduces a new approach to reduce the spread of antibiotic resistance among bacteria. / Das vorherrschende Anpassungsmittel bei gramnegativen Bakterien ist ein genetisches System, das Integron genannt wird. Es ordnet Genkassetten neu an und fördert so multiple Antibiotikaresistenzen, die eine globale Gesundheitsbedrohung darstellen. Es basiert auf einem einzigartigen Rekombinationsprozess, an dem eine Tyrosin-Rekombinase - Integrase IntI genannt - und gefaltete einzelsträngige DNA-Hairpins - attC-Stellen genannt - beteiligt sind. Vier Rekombinasen und zwei attC-Stellen bilden einen makromolekularen synaptischen Komplex, der für den gesamten Rekombinationsprozess entscheidend ist und im Mittelpunkt unserer Forschung steht. Der untere Strang aller attC-Stellen weist in vivo die höchste Rekombinationsrate auf, die jedoch aus unbekannten Grund stark variier. Wir vermuten, dass der Unterschied in der Rekombinationsrate auf die unterschiedliche mechanische Stabilität des synaptischen Komplexes zurückzuführen ist, die wiederum von der attC-Stelle beeinflusst wird. Hier haben wir einen Test mittels Kraft-spektroskopie mit einer optischen Pinzette entwickelt, mit dem wir die Stabilität des synaptischen Komplexes für verschiedene DNA-Substrate und Proteinvarianten untersuchen können. Wir stellten eine starke Korrelation zwischen der Rekombinationsrate und der mechanischen Stabilität der Synapse fest, was auf einen Regulationsmechanismus zwischen der DNA-Sequenz und der Stabilität der quaternären Komplexstruktur hinweist. Wir haben Proteinreste entdeckt, die innerhalb des synaptischen Komplexes mit der DNA in trans interagieren, was zu einer Verringerung dessen Stabilität führt. Darüber hinaus stellten wir fest, dass die C-terminale Helix, ein konserviertes Strukturmerkmal von Tyrosin-Rekombinasen, eine Schlüsselrolle bei der Stabilisierung des Tetramer-Aufbaus an der DNA spielt, die bei Mutation den synaptischen Komplex erheblich destabilisiert. Auf der Grundlage dieses neuen Verständnisses der Regulierung der Synapsenstabilität haben wir einen neuen Ansatz zur Destabilisierung des synaptischen Komplexes entwickelt, der die Effizienz der Rekombination verringern könnte. Wir entwarfen α-Helix-nachahmende Peptide, die mit dem C-terminalen Ende der Integrase konkurrieren, die Interlocking-Interaktion blockieren und zur Destabilisierung des synaptischen Komplexes führen. Wir haben eine deutliche destabilisierende Wirkung auf den synaptischen Komplex bereits bei einer Peptidkonzentration von 10 µM beobachtet. Insgesamt zeigen unsere Ergebnisse neue Regulationsmechanismen für die Rekombinationsleistung des bakteriellen Integrons auf und liefern erste Daten für den Mechanismus der aktiven Destabilisierung der Synapse. Dieses neue Verständnis der regulatorischen Rolle, die der synaptische Komplex bei der Rekombinationseffizienz des Integronsystems spielt, eröffnet einen neuen Ansatz zur Verringerung der Verbreitung von Antibiotikaresistenzen unter Bakterien.

Page generated in 0.0996 seconds