• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 294
  • 57
  • 39
  • 35
  • 31
  • 29
  • 8
  • 7
  • 5
  • 5
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 646
  • 160
  • 127
  • 98
  • 94
  • 93
  • 75
  • 74
  • 72
  • 68
  • 66
  • 53
  • 50
  • 43
  • 42
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Celastrol, a proteasome inhibitor, can induce the expression of heat shock protein genes in Xenopus cultured cells

Walcott, Shantel 01 1900 (has links)
Heat shock proteins (HSPs) are stress-inducible and evolutionarily conserved molecular chaperones that are involved in protein binding and translocation. As molecular chaperones, HSPs bind to denatured proteins, inhibit their aggregation, maintain their solubility, and assist in refolding. This process inhibits the formation of protein aggregates which can be lethal to the cell. In eukaryotic cells, the ubiquitin-proteasome system (UPS) is responsible for the degradation of most non-native proteins. Furthermore, proteasome inhibition has been shown to induce hsp gene expression. Celastrol, a quinone methide triterpene, was shown to have an inhibitory effect on proteasome function in mammalian cells. The present study determined that celastrol induced the accumulation of ubiquitinated proteins and reduced proteasomal chymotrypsin-like activity in Xenopus laevis A6 kidney epithelial cells. In addition, incubation of A6 cells with celastrol induced the accumulation of HSP30 and HSP70 in a dose- and time-dependent manner with maximal levels of HSP accumulation occurring after 18 h of exposure. In A6 cells recovering from celastrol, the relative levels of HSP30 and HSP70 accumulation remained elevated for 18-24 h after removal of celastrol. The activation of heat shock factor 1 (HSF1) DNA-binding may be involved in celastrol-induced hsp gene expression in A6 cells, since the HSF1 inhibitor, KNK437, repressed the accumulation of HSP30 and HSP70. Exposure of A6 cells to simultaneous celastrol and mild heat shock treatment enhanced the accumulation of HSP30 and HSP70 to a greater extent than the sum of both stressors individually. Additionally, concurrent treatment of A6 cells with low concentrations of both celastrol and MG132 produced different patterns of HSP30 and HSP70 accumulation. While combined treatment with celastrol and MG132 acted synergistically on HSP30 accumulation, relative levels of HSP70 were similar to those observed with MG132 alone. Immunocytochemical analysis of celastrol- or MG132-treated A6 cells revealed HSP30 accumulation in a punctate pattern primarily in the cytoplasm with some staining in the nucleus. Also, in some cells treated with celastrol or MG132 large HSP30 staining structures were observed in the cytoplasm. Lastly, exposure of A6 cells to celastrol induced rounder cell morphology, reduced adherence and disorganization of the actin cytoskeleton. In conclusion, this study has shown that celastrol inhibited proteasome activity in amphibian cultured cells and induced HSF1-mediated expression of hsp genes.
112

Celastrol, a proteasome inhibitor, can induce the expression of heat shock protein genes in Xenopus cultured cells

Walcott, Shantel 01 1900 (has links)
Heat shock proteins (HSPs) are stress-inducible and evolutionarily conserved molecular chaperones that are involved in protein binding and translocation. As molecular chaperones, HSPs bind to denatured proteins, inhibit their aggregation, maintain their solubility, and assist in refolding. This process inhibits the formation of protein aggregates which can be lethal to the cell. In eukaryotic cells, the ubiquitin-proteasome system (UPS) is responsible for the degradation of most non-native proteins. Furthermore, proteasome inhibition has been shown to induce hsp gene expression. Celastrol, a quinone methide triterpene, was shown to have an inhibitory effect on proteasome function in mammalian cells. The present study determined that celastrol induced the accumulation of ubiquitinated proteins and reduced proteasomal chymotrypsin-like activity in Xenopus laevis A6 kidney epithelial cells. In addition, incubation of A6 cells with celastrol induced the accumulation of HSP30 and HSP70 in a dose- and time-dependent manner with maximal levels of HSP accumulation occurring after 18 h of exposure. In A6 cells recovering from celastrol, the relative levels of HSP30 and HSP70 accumulation remained elevated for 18-24 h after removal of celastrol. The activation of heat shock factor 1 (HSF1) DNA-binding may be involved in celastrol-induced hsp gene expression in A6 cells, since the HSF1 inhibitor, KNK437, repressed the accumulation of HSP30 and HSP70. Exposure of A6 cells to simultaneous celastrol and mild heat shock treatment enhanced the accumulation of HSP30 and HSP70 to a greater extent than the sum of both stressors individually. Additionally, concurrent treatment of A6 cells with low concentrations of both celastrol and MG132 produced different patterns of HSP30 and HSP70 accumulation. While combined treatment with celastrol and MG132 acted synergistically on HSP30 accumulation, relative levels of HSP70 were similar to those observed with MG132 alone. Immunocytochemical analysis of celastrol- or MG132-treated A6 cells revealed HSP30 accumulation in a punctate pattern primarily in the cytoplasm with some staining in the nucleus. Also, in some cells treated with celastrol or MG132 large HSP30 staining structures were observed in the cytoplasm. Lastly, exposure of A6 cells to celastrol induced rounder cell morphology, reduced adherence and disorganization of the actin cytoskeleton. In conclusion, this study has shown that celastrol inhibited proteasome activity in amphibian cultured cells and induced HSF1-mediated expression of hsp genes.
113

Analysis of functional domains required for hRad18 interactions with HHR6B and hUbc9

Ma, Xinfeng 29 March 2006 (has links)
DNA post-replication repair (PRR) is a cellular tolerance mechanism by which eukaryotic cells survive lethal lesions during or after DNA synthesis. In the yeast Saccharomyces cerevisiae, modification of proliferating cell nuclear antigen (PCNA) by ubiquitin and by small ubiquitin-like modifier (SUMO) plays an important role in PRR. PCNA ubiquitination is dependent on Rad6, a ubiquitin-conjugating enzyme (E2) and Rad18, a ubiquitin ligase (E3). Rad6 and Rad18 form a stable complex. PCNA sumoylation is dependent on Ubc9, an E2 specific to SUMO modification. <p>PRR in mammalian cells is less well understood. However, human Rad18 (hRad18) has been found to interact with human Rad6 (HHR6A/B). In this study, we detected physical interaction between hRad18 and human Ubc9 (hUbc9) through yeast two-hybrid assays. In order to define the domain(s) of hRad18 involved in the formation of a complex with HHR6B or hUbc9, a series of yeast two-hybrid constructs containing various hRAD18 gene deletions and mutations were made. A C-terminal region of hRad18, containing the putative HHR6A/B binding domain (amino acids 340 to 395), interacts with HHR6A/B while the N-terminus (amino acids 1-93) does not. Yeast Rad18 has a homologous fragment of the HHR6A/B binding domain and this fragment is sufficient to interact with yeast Rad6 in yeast two-hybrid assays, so we infer that hRad18 interacts with HHR6B through the same domain. Surprisingly, both the N-terminal and C-terminal fragments of hRad18 can interact with hUbc9, suggesting the existence of two separate domains in hRad18 interacting with hUbc9. The N-terminal fragment of hRad18 contains only a RING finger domain (amino acids 25-64), which is probably responsible for binding to hUbc9. The C-terminal fragment of hRad18 with HHR6A/B binding domain deletion can still interact with hUbc9, suggesting that the HHR6A/B binding domain is not involved in hUbc9 interaction. A key cysteine mutation (C28F) in the RING finger domain abolished the interactions of hRad18 with both HHR6A/B and hUbc9. This amino acid substitution is likely to alter the three-dimensional structure of the protein, thus making the protein unstable. Taken together, results obtained from this study suggest that hRad18 may regulate the modification status of PCNA by interacting with two different E2s, HHR6A/B and hUbc9, through distinct domains.
114

Ubiquitin Recognition by Ubiquitin-Binding Domains in Y-Family DNA Polymerases

Bomar, Martha Grier January 2009 (has links)
<p>Translesion synthesis (TLS) is a specialized type of DNA repair for bypassing DNA damage at the stalled replication fork. Because the TLS polymerases (mainly from the Y-family of polymerases) are characterized by more open active sites in order to accommodate the lesions, they are inherently more mutagenic than the replicative polymerases. Although essential for cell survival and in tolerating DNA damage, the access of the TLS polymerases to the replication fork must be tightly controlled. This regulation occurs in part through the ubiquitination state of the processivity factor PCNA. Damage-induced monoubiquitination of PCNA serves in part as the regulatory switch between replicative and translesion polymerases. Highly conserved ubiquitin-binding domains, the ubiquitin-binding zinc finger (UBZ) domain and the ubiquitin-binding motif (UBM), within the C-termini of the Y-family polymerases provide for an increased affinity of the polymerases to PCNA after damage to promote TLS. In order to determine the molecular basis for ubiquitin recognition by the TLS polymerases, we solved the solution structures of the human pol &#951; UBZ domain, the human pol &#953; UBM2 domain, and the human pol &#953; UBM2-ubiquitin complex. </p><p>The UBZ domain adopts a classical C2H2 zinc finger structure characterized by a &#946;&#946;&#945; fold, similar to the DNA-binding zinc finger proteins. Nuclear magnetic resonance titration mapped the binding interfaces between UBZ and ubiquitin to the &#945;-helix of the UBZ domain and the canonical hydrophobic surface of ubiquitin defined by residues L8, I44 and V70. Although the UBZ domain binds ubiquitin through a single &#945;-helix, in a manner similar to the inverted ubiquitin-interacting motif, its structure is distinct from previously characterized ubiquitin-binding domains. The pol &#951; UBZ domain represents a novel member of the C2H2 zinc finger family that interacts with ubiquitin to regulate translesion synthesis. </p><p>In contrast to the human UBZ domain, the yeast UBZ domain lacks one of the conserved cysteines necessary for zinc coordination, leading many to propose that it is a "zincless" zinc finger. We used biophysical methods to characterize the UBZ domains from human and yeast pol &#951; and to highlight differences between their structures and modes of ubiquitin binding. Like the human UBZ domain, the yeast UBZ domain binds zinc, which contributes to its secondary structure formation. In contrast to the human UBZ domain, the yeast UBZ domain binds to ubiquitin in a zinc-independent manner. Correspondingly, mutations in the zinc-coordinating residues of the yeast UBZ domain do not impair the polymerase's response to DNA damage.</p><p>We also investigated the structural elements and mechanism of ubiquitin recognition of the ubiquitin-binding motif (UBM) found in pol &#953; and Rev1. The solution structures of the C-terminal UBM of human pol &#953; and its complex with ubiquitin were solved. The UBM is a novel ubiquitin-binding domain that binds to the hydrophobic surface of ubiquitin centered at L8. Accordingly, mutation of L8A, but not I44A of ubiquitin abolishes UBM binding. Human pol &#953; contains two functional UBMs, both of which contribute to replication foci formation. In contrast, only the second UBM of <italic>Saccharomyces cerevisiae</italic> Rev1 binds to ubiquitin and is essential for Rev1-dependent cell survival and mutagenesis. Point mutations impairing the UBM-ubiquitin interaction also disrupt foci formation of pol &#953; and the DNA damage response of Rev1 <italic>in vivo</italic>, showing the significant role for the UBM in regulating TLS.</p><p>The structures of the UBZ domain and the UBM and their recognition of ubiquitin are different and distinct from other ubiquitin-binding domains. Their highly specific and unique associations with ubiquitin are critical for TLS regulation and further add to the diverse base of ubiquitin-binding domains and their role in mediating cellular functions.</p> / Dissertation
115

A novel role of the E3 ubiquitin ligase as a transcription regulation in eukaryotic cell nucleus

Tam, Chun-yee. January 2009 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2010. / Includes bibliographical references (leaves 47-53). Also available in print.
116

Functional characterization of PAG1, the [alpha]7 subunit of the 20S proteasome and of the ubiquitin-specific protease subfamilies UBP12/13 and UBP3/4 in Arabidopsis thaliana

Soyler-Ogretim, Gulsum. January 1900 (has links)
Thesis (Ph. D.)--West Virginia University, 2009. / Title from document title page. Document formatted into pages; contains ix, 89 p. : ill. (some col.). Vita. Includes abstract. Includes bibliographical references (p. 82-88).
117

Novel anti-interferon mechanism : influenza B virus both induces and blocks the activity of the ubiquitin-like ISG15 protein /

Yuan, Weiming, January 2000 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2000. / Vita. Includes bibliographical references (leaves 85-98). Available also in a digital version from Dissertation Abstracts.
118

Identification of phosphorylation sites of TOPORS and a role for phosphorylated residues in the regulation of ubiquitin and SUMO E3 ligase activity

Park, Hye-Jin. January 2008 (has links)
Thesis (Ph. D.)--Rutgers University, 2008. / "Graduate Program in Pharmaceutical Science." Includes bibliographical references (p. 99-107).
119

Characterization of Herc5: the major ligase for ISG15, an antiviral ubiquitin-like protein / Major ligase for ISG15, an antiviral ubiquitin-like protein

Dastur, Anahita R., 1975- 28 August 2008 (has links)
Human ISG15 is a 17 kDa ubiquitin-like protein (Ubl) that is induced by type I interferons (interferons [alpha] and [beta]) and plays a role in antiviral responses. ISG15 is conjugated via its C-terminus to more than 150 cellular proteins, and like ubiquitin, an E1-E2-E3 enzymatic cascade is required for conjugation. Ube1L and UbcH8 were previously identified as the E1 and E2 enzymes for this pathway. My experiments identified Herc5, a HECT domain E3, as the major ligase for ISG15. Like ISG15, Ube1L, and UbcH8, expression of Herc5 is transcriptionally induced by type I interferons. siRNAs against Herc5 abrogated ISG15 conjugation to the vast majority of target proteins in interferon-treated cells. Wild type Herc5, but not the catalytically inactive C994A mutant, supported conjugation of ISG15 in non-interferon-treated cells co-transfected with Ube1L, UbcH8 and ISG15. IQGAP1, a scaffold protein, was identified as another essential component of the ISG15 system. IQGAP1 was discovered to interact with Herc5, and this interaction was mediated by the C-terminal domain of IQGAP1 and the N-terminal RCC1-like repeats of Herc5. IQGAP1 was required for auto-conjugation of ISG15 to Herc5, and I propose a model where IQGAP1 functions, at least in part, by relieving an auto-inhibitory conformation of Herc5. Thus, I have identified two factors that are critical for ISG15 conjugation and my discoveries have increased our understanding of the ISG15 pathway. Identification and characterization of the conjugation apparatus will aid in establishing an in vitro biochemical system for ISG15 conjugation, which in turn, will be important to decipher the biological function of ISG15 modification. / text
120

Cbl-b: its role of expression and regulation in T-lymphocyte activation and ageing / Its role of expression and regulation in T-lymphocyte activation and ageing

Xu, Zhun, 1973- 28 August 2008 (has links)
The aging process is strongly associated with decreased activity in the immune system. Dysregulation of T-lymphocyte function, such as reduced proliferation, is one problem faced by most elder people, which prevents them from successfully dealing with exogenous pathogens. Effective regulation of T-lymphocyte activity depends on the proper and prompt transduction of both positive and negative signals within Tlymphocytes and reflects the balance between positive and negative effects. Decline of positive signaling in aging has been studied and reported, while mechanisms concerning up-regulation of negative signaling with age and its role in immune senescence are still unclear. Cbl-b, an E3 ubiquitin ligase, was studied by our lab since it regulates the ubiquitin process, a protein modification process that has suppressive effects on signaling pathways. We first determined the reaction of Cbl-b to different stimuli in young rat splenic T-lymphocytes, and showed that there is a decrease in Cbl-b protein expression upon CD28 stimulation and such protein degradation is proteasome-dependent only. We also showed the mechanism of Cbl-b expression regulation involves the intracellular movement of Nedd4 toward Cbl-b and an up-regulation of Nedd4 expression. Then we proved that in old splenic T-lymphocytes, decreased proteasome activity was unable to down-regulate the Cbl-b protein. High levels of Cbl-b in old T-lymphocytes are functional in preventing PI3K activity and are associated with reduced T-lymphocyte proliferation upon regular stimulation. T-lymphocytes from old Cbl-b knock-out mice show similar proliferative reaction to CD3 stimulation as T-lymphocytes from young wild-type, which establishes the causeeffect relationship between sustained Cbl-b expression and decreased T-lymphocyte proliferation. In summary, these data suggest a unique role of Cbl-b in regulating Tlymphocyte signal transduction and provide critical preliminary data for extending Cbl-b studies into other fields, such as carcinogenesis.

Page generated in 0.029 seconds