271 |
Distinctive Regulation of Low-Voltage-activated Calcium Channels by Neural precursor cell Expressed Developmentally Down-regulated protein 4 (NEDD4) Family E3 Ubiquitin LigasesDarko-Boateng, Arden January 2023 (has links)
Dysregulation of low-voltage-activated calcium channels (CaV3.1-CaV3.3) underlies diseases including chronic pain, autism, and hypertension. As a major determinant of protein half-life, the ubiquitin-proteasome system (UPS) may not only cause abnormal CaV3 expression but also be targeted to control channel levels for therapy.
There are >600 E3 ubiquitin ligases that catalyse the final step in ubiquitination. A crucial aspect of harnessing the UPS is knowing which E3 ligases regulate a given substrate, and whether their actions are redundant. We report that CaV3.1 and CaV3.2 are distinctively regulated by two NEDD4 family E3 ligases – NEDD4L and Smurf1. Reconstituted CaV3.1 currents were robustly suppressed by Smurf1 but not NEDD4L, whereas CaV3.2 was inhibited by both NEDD4L and Smurf1, concomitant with diminished channel surface density and expression. FRET experiments revealed NEDD4L and Smurf1 interact with distinct loci in CaV3.1 and CaV3.2.
Nanobody-mediated targeting of NEDD4L or Smurf1, but not WWP1, HECT domains to CaV3.1 and CaV3.2 strongly suppressed currents through both channels. shRNA knockdown of either NEDD4L or Smurf1 in dorsal root ganglion (DRG) neurons substantially increased both low-voltage and high-voltage-activated calcium channel currents.
The results reveal non-redundant regulation of CaV3 channels by NEDD4L and Smurf1; introduce Smurf1 as a potent determinant of ion channel expression; suggest a new mechanism for CaV3.2 up-regulation in chronic pain; and advance leveraging the UPS to control CaV3 expression for therapy.
|
272 |
Regulation of the DNA Damage Response by the Ubiquitin System / Regulierung der DNA-Schadensreaktion durch das Ubiquitin SystemXu, Wenshan January 2022 (has links) (PDF)
DNA damage occurs frequently during normal cellular progresses or by environmental factors. To preserve the genome integrity, DNA damage response (DDR) has evolved to repair DNA and the non-properly repaired DNA induces human diseases like immune deficiency and cancer. Since a large number of proteins involved in DDR are enzymes of ubiquitin system, it is critical to investigate how the ubiquitin system regulates cellular response to DNA damage. Hereby, we reveal a novel mechanism for DDR regulation via activation of SCF ubiquitin ligase upon DNA damage.
As an essential step for DNA damage-induced inhibition of DNA replication, Cdc25A degradation by the E3 ligase β-TrCP upon DNA damage requires the deubiquitinase Usp28. Usp28 deubiquitinates β-TrCP in response to DNA damage, thereby promotes its dimerization, which is required for its activity in substrate ubiquitination and degradation. Particularly, ubiquitination at a specific lysine on β-TrCP suppresses dimerization.
The key mediator protein of DDR, 53BP1, forms oligomers and associates with β-TrCP to inhibit its activity in unstressed cells. Upon DNA damage, 53BP1 is degraded in the nucleoplasm, which requires oligomerization and is promoted by Usp28 in a β-TrCP-dependent manner. Consequently, 53BP1 destruction releases and activates β-TrCP during DNA damage response.
Moreover, 53BP1 deletion and DNA damage promote β-TrCP dimerization and recruitment to chromatin sites that locate in the vicinity of putative replication origins. Subsequently, the chromatin-associated Cdc25A is degraded by β-TrCP at the origins. The stimulation of β-TrCP binding to the origins upon DNA damage is accompanied by unloading of Cdc45, a crucial component of pre-initiation complexes for replication. Loading of Cdc45 to origins is a key Cdk2-dependent step for DNA replication initiation, indicating that localized Cdc25A degradation by β-TrCP at origins inactivates Cdk2, thereby inhibits the initiation of DNA replication.
Collectively, this study suggests a novel mechanism for the regulation of DNA replication upon DNA damage, which involves 53BP1- and Usp28-dependent activation of the SCF(β-TrCP) ligase in Cdc25A degradation. / DNA-Schäden treten häufig in Folge zellulären Fortschrittes oder durch externe Faktoren auf. Um die Integrität des Genoms zu bewahren und DNA Schäden zu reparieren, die Ursache für viele Autoimmunkrankheiten und Krebs sind, hat sich ein durch DNA Schäden getriggertes Geflecht aus Reparaturprozessen (englisch: “DNA damage response (DDR)”) entwickelt. Hierbei ist es von großem Interesse zu verstehen, wie das Ubiquitin-Proteasom-System die zelluläre Antwort auf DNA-Schäden reguliert. Wir konnten zeigen, dass die SCF Ubiquitin Ligase β-TrCP durch geschädigte DNA aktiviert wird, was einen bisher unbekannten Mechanismus für die Regulation der DDR darstellt.
Für den grundlegenden Schritt der durch DNA Schäden ausgelösten Inhibition der DNA Replikation – der Abbau von Cdc25A durch die E3 Ligase β-TrCP – wird die Deubiquitinase Usp28 benötigt. Diese deubiquitiniert β-TrCP als Antwort auf DNA-Schäden und fördert dadurch seine Dimerisierung, die für die Substrat-Ubiquitinierung und dem anschließenden Abbau erforderlich ist. Hierbei unterdrückt die Ubiquitinierung eines spezifischen Lysin-Rests von β-TrCP dessen Dimerisierung.
Das Schlüsselprotein vom DDR, 53BP1, oligomerisiert und assoziiert mit β-TrCP, was seine Aktivität in gesunden Zellen inhibiert. Auf DNA-Schäden hin oligomerisiert 53BP1 und wird mit Hilfe von Usp28 abhängig von β-TrCP im Nukleoplasma abgebaut. Durch den Abbau von 53BP1 wird β-TrCP freigesetzt, aktiviert und kann auf DNA Schäden reagieren.
Die Deletion von 53BP1 fördert die Dimerisierung von β-TrCP. Die Reparaturmaschinerie wird daraufhin an Stellen des Chromatins rekrutiert, die in der Nähe von vermeintlichen Replikationsursprüngen liegen. Chromatin-assoziiertes Cdc25A wird dann durch β-TrCP ubiquitiniert. Die Bindung von β-TrCP an die Replikationsursprünge in Folge von DNA Schädigung wird begleitet von der Freisetzung von Cdc45, das eine entscheidende Komponente des Präinitiationskomplexes darstellt. Das Beladen von Cdc45 an die Replikationsursprünge stellt eine Schlüsselfunktion der Cdc25A-abhängigen DNA Replikationsinititation dar. Gezielter Abbau von Cdc25A durch β-TrCP an den Replikationsursprüngen inaktiviert Cdk2 und inhibiert dadurch DNA Replikation.
Zusammenfassend lässt sich konstatieren, dass unsere Studien einen neuartigen Mechanismus für die Regulation der DNA Replikation auf DNA Schäden hin aufgezeigt haben, der die 53BP1- und Usp28-abhängige Aktivierung der SCF(β-TrCP) Ubiquitin Ligase im Abbau von Cdc25A beinhaltet.
|
273 |
Knowing then defeating: The Ubiquitin activating enzyme, a promising target for cancer therapy / Erst verstehen, dann besiegen: Das Ubiquitin-aktivierende Enzym, ein vielversprechender Kandidat in der KrebstherapieMisra, Mohit January 2020 (has links) (PDF)
Ubiquitin is a 76 amino acid long polypeptide, which is present throughout eukaryotes in a highly conserved fashion. Ubiquitin can modify proteins by becoming covalently attached to them. Eukaryotic cells employ ubiquitin to maintain and regulate fundamental cellular processes like protein degradation, the immune response and transcriptional and translational regulation. Transfer of ubiquitin to the substrate is achieved by the catalysis of three classes of enzymes namely E1, E2 and E3. Together these enzymes form a pyramidal hierarchy, where E1 stands at the apex and E3 enzymes form the base of the pathway.
The ubiquitin activating enzyme 1 (UBA1) plays a major role in ubiquitylation being the ubiquitin-dedicated E1 enzyme. In addition, it is the only enzyme in this pathway to use ATP as an energy source to catalyze two important reactions. The products of these reactions, ubiquitin adenylate and ubiquitin thioester, are the essential intermediate states of ubiquitin, for being conjugated to the target protein. With the help of X-ray crystallography and biochemical approaches, snapshots of multiple catalytic states of UBA1, where it is bound to Mg-ATP, ubiquitin and the E2 Ubc13 as substrates could be captured. With the help of these high-resolution crystal structures, deeper insights into the enzymatic mechanism of UBA1 could be attained. The resulting insights into the catalytic cycle were further validated by biochemical assays. It could be shown that ATP acts as a molecular switch to induce the enzyme’s open conformation. Ubiquitin-binding to the enzyme leads to domain rotations, which facilitate the recruitment of a cognate E2 enzyme. The interdomain communication as well as the cross-talk with the substrates and the products fuel the enzymatic cycle of UBA1.
Due to the proven efficacy of proteasome inhibitors for cancer treatment, which block degradation of proteins labeled with ubiquitin, enzymes participating in the ubiquitylation cascade have been targeted by researchers for the development of novel anti-cancer therapeutics. UBA1 inhibition has been shown to preferentially induce cell death in malignant cells, and it can also be used as a strategy to overcome resistance against proteasome inhibitors. MLN7243, an adenosyl sulfamate inhibitor developed by Millenium Pharmaceutical to specifically target UBA1, is currently in Phase-I clinical trials for the treatment of solid tumors. UBA1 could be crystallized in complex with three adenosyl sulfamate inhibitors covalently linked to ubiquitin, which are promising drug candidates for cancer therapy. The inhibitors employed, MLN7243, MLN4924 and ABPA3, show distinct specificities towards different E1 enzymes. With the help of crystal structures the specificity determinants of these inhibitors could be deciphered, which were further confirmed by inhibition assays as well as molecular dynamics simulations. Together these crystal structures provide a starting point for developing E1-specific inhibitors, which, besides their potential for medicinal purposes, are important tools to better understand the function of the ubiquitin system as well as the action of ubiquitin-like proteins. / Ubiquitin ist ein 76 Aminosäuren langes Polypeptid, das in allen Eukaryoten vorkommt und hoch konserviert ist. Ubiquitin kann Proteine modifizieren indem es mittels einer kovalente Bindung an diese angeheftet wird. Eukaryotische Zellen nutzen Ubiquitin, um fundamentale zelluläre Prozesse wie den Proteinabbau, die Immunantwort sowie die Regulation der Transkription und Translation aufrecht zu erhalten. Der Transfer von Ubiquitin auf das Substrat wird durch die Katalyse von drei Enzymklassen E1, E2 und E3 erreicht. Zusammen bilden diese Enzyme eine pyramidale Hierarchie in der das E1 an der Spitze steht und die E3 Enzyme die Basis bilden.
Das Ubiquitin-aktivierende Enzym 1 (UBA1) ist das E1 Enzym für Ubiquitin und spielt somit eine Hauptrolle in der Ubiquitinierung. Weiterhin ist es das einzige Enzym dieses Stoffwechselweges, das ATP als Energie nutzt, um zwei wichtige Reaktionen zu katalysieren. Die Produkte dieser Reaktionen, Ubiquitin-Adenylat und thioesterifiziertes Ubiquitin, sind die essentiellen Ubiquitinintermediate für die Konjugation an das Zielprotein. Mit Hilfe der Röntgenstrukturanalyse und biochemischer Ansätze konnten für UBA1 Momentaufnahmen multipler katalytischer Zustände erfasst werden, in denen es an die Substrate Mg-ATP, Ubiquitin und dem E2 Enzym Ubc13 gebunden vorliegt. Mit Hilfe dieser hochaufgelösten Kristallstrukturen konnten tiefere Einblicke in den enzymatischen Mechanismus des Enzyms erzielt werden. Die gesammelten Erkenntnisse zum katalytischen Zyklus wurden mittels biochemischer Methoden validiert. Es konnte gezeigt werden, dass ATP als molekularer Schalter fungiert, um das Enzym in seine offene Konformation zu überführen. Die Bindung von Bindung an das Enzym führt zur Rotation einzelner Domänen welche die Rekrutierung des E2 Enzymes erleichtern. Die Interdomänen-Interaktion sowie molekulare Wechselwirkungen mit den Substraten und Produkten treiben den enzymatischen Zyklus von UBA1 an.
Die Einsatz von Proteasominhibitoren, die den Abbau von Ubiquitin-markierten Proteinen blockieren, in der Krebstherapie weckte das Interesse von Forschern Enzyme, die an der Ubiquitinierungs-Kaskade beteiligt sind, als neue therapeutische Ziele zur Bekämpfung von Krebserkrankungen zu erschließen. Es konnte gezeigt werden, dass die Inhibierung von UBA1 bevorzugt den Tod maligner Zellen induziert und als Strategie für die Überwindung der Resistenz von Proteasominhibitoren genutzt werden kann. MLN7243, ein Adenosyl-Sulfamat Inhibitor, der von Millenium Pharmaceuticals entwickelt wurde und spezifisch UBA1 angreift, befindet sich gegenwärtig in klinischen Studien der Phase I mit dem Ziel einer Behandlung von soliden Tumoren. UBA1 konnte im Komplex mit drei an Ubiquitin gekoppelten Adenosyl-Sulfamat Inhibitoren, die vielversprechende Wirkstoffe in der Krebstherapie
sind, kristallisiert werden. Die Inhibitoren MLN7243, MLN4924 und ABPA3 besitzen unterschiedliche Spezifitäten für verschiedene E1 Enzyme. Mit Hilfe von Kristallstrukturen konnten Spezifitätsfaktoren dieser Inhibitoren entschlüsselt werden, die im Weiteren mittels Inhibierungstests und molekulardynamischer Simulationen bestätigt werden konnten. Diese Kristallstrukturen lieferten ein klareres Bild für die Entwicklung E1-spezifischer Inhibitoren mit deren Hilfe, neben ihrer potentiellen medizinischen Anwendung, ein besseres Verständnis des Ubiquitinsystems und Ubiquitin-ähnlicher kovalenter Verknüpfungen gewonnen werden kann.
|
274 |
Cardioprotective Potential of Exogenous UbiquitinDalal, Suman, Shook, Paige L., Singh, Mahipal, Singh, Krishna 01 January 2020 (has links)
Ischemic heart disease (IHD) accounts for the majority of heart disease-related deaths worldwide. Ubiquitin (UB), found in all eukaryotic cells, is a highly conserved low molecular weight (~8.5 kDa) protein. A well-known intracellular function of UB is to regulate protein turnover via the UB-proteasome system. UB is a normal constituent of plasma, and elevated levels of UB are observed in the serum of patients under a variety of pathological conditions. Recent studies provide evidence for cardioprotective potential of exogenous UB in the remodeling process of the heart in IHD, including effects on cardiac myocyte apoptosis, inflammatory response, and reorganization of the vasculature and extracellular matrix. This review summarizes functions of UB with an emphasis on the role of exogenous UB in myocardial remodeling in IHD.
|
275 |
Modeling of Fbxw7 by SAXS and EM Reveals that Dimeric SCF Ligase Orientations are not ConservedSchoch, Emma 23 August 2022 (has links)
No description available.
|
276 |
Biophysical Study of the Ubiquitin Ligase CHIP and Interactions with the Molecular Chaperones Hsp70 and Hsp90Zhang, Huaqun 21 November 2017 (has links)
No description available.
|
277 |
Assessing NMR-based Studies of Denatured Proteins using Non-random Structural EnsemblesZhang, Yue 17 May 2014 (has links)
The random-coil model has been dominant for unfolded proteins since the 1950’s; however, some experiments showed that the unfolded proteins were biased toward specific conformations in conflict with the random-coil model. Recently, residual dipolar couplings (RDCs) and paramagnetic relaxation enhancement (PRE) were applied to obtain a large amount of structural information on unfolded proteins. Typically, these data were interpreted in a framework of random-coil ensembles with a good agreement between experimental data and theoretical predictions. In this thesis, it was tested whether locally organized nonrandom ensembles could describe this agreement equally as well. Using a complete set of RDC and PRE data for denatured ubiquitin, it was revealed that there was no distinguishable difference between random-coil ensembles and ensembles containing 50% native structure. Thus, while it is important to measure as many RDCs or PRE as possible, even the best datasets may be insensitive to local organization in unfolded proteins.
|
278 |
Spatial Dispersion of the Fungus Aspergillus Flavus in Corn Ears: A Spatial Analysis of Ubiquitin MrnaMylroie, Leif Saxon 08 August 2009 (has links)
Aflatoxin is a carcinogen produced by the fungus Aspergillus flavus that causes millions of dollars in agriculture losses in the southeastern US. This thesis examines the dispersal of A. flavus on two corn inbred lines, resistant (Mp313E) and susceptible (B73), which differ in total aflatoxin accumulation after infection with A. flavus. After inoculating corn kernels with the fungus an RNA analysis was used to determine the location (number of kernels away from inoculation site) and abundance of A. flavus at weekly intervals. A. flavus started its spread at 7 days after inoculation (DAI) on both corn lines. The B73 corn line showed a constant spread of 3.4mm per day until the entire ear was infected at 21 DAI. The spread on Mp313E did not proceed beyond 3 kernels away from the inoculation site following 7 DAI. The results are significant because they show a faster rate of spread than previously reported and they help quantify the ability of Mp313E to mitigate infection.
|
279 |
In vivo and in vitro degradation of cytochrome P-450 2E1: A potential role for ubiquitin-mediated proteolysisTierney, Daniel January 1992 (has links)
No description available.
|
280 |
Muscle Growth and Function in Mouse Models of Type 2 Diabetes MellitusOstler, Joseph Eldon January 2013 (has links)
No description available.
|
Page generated in 0.0434 seconds