301 |
Die Auswirkung von verschiedenen Proteasom-Inhibitoren auf die Wallersche Degeneration peripherer Nerven in vitro und in vivo / The effect of different proteasome inhibitors on Wallerian degeneration of peripheral nerves in vivo and in vitroDenninger, Stefan Christoph 04 September 2013 (has links)
No description available.
|
302 |
Structural and Functional Relationships between Ubiquitin Conjugating Enzymes (E2s) and Ubiquitin Ligases (E3s)Hong, Jenny (Hong) 07 August 2013 (has links)
The first part of the thesis describes a systematic function analysis that identified in vitro E2 partners for ten different HECT E3 ligase proteins. Using mass spectrometry, the linkage composition for the resulting autoubiquitylation products of a number of functional E2-HECT pairs was determined. HECT domains from different subfamilies catalyze the formation of very different types of Ub chains, largely independent of the E2 in the reaction.
The second part of the thesis describes the characterization of the RAD6-interactome. Using affinity purification coupled with mass spectrometry, I identified a novel RAD6-interacting E3 ligase, KCMF1, which binds to a different surface on RAD6 than the other RAD6-associated E3 ligases. KCMF1 also recruits additional proteins to RAD6, and this new complex points to novel RAD6 functions. Interestingly, the RAD6A R11Q mutant polypeptide, found in X-linked mental retardation patients specifically loses the interaction with KCMF1, but not with other RAD6-associated E3 ligases.
|
303 |
Structural and Functional Relationships between Ubiquitin Conjugating Enzymes (E2s) and Ubiquitin Ligases (E3s)Hong, Jenny (Hong) 07 August 2013 (has links)
The first part of the thesis describes a systematic function analysis that identified in vitro E2 partners for ten different HECT E3 ligase proteins. Using mass spectrometry, the linkage composition for the resulting autoubiquitylation products of a number of functional E2-HECT pairs was determined. HECT domains from different subfamilies catalyze the formation of very different types of Ub chains, largely independent of the E2 in the reaction.
The second part of the thesis describes the characterization of the RAD6-interactome. Using affinity purification coupled with mass spectrometry, I identified a novel RAD6-interacting E3 ligase, KCMF1, which binds to a different surface on RAD6 than the other RAD6-associated E3 ligases. KCMF1 also recruits additional proteins to RAD6, and this new complex points to novel RAD6 functions. Interestingly, the RAD6A R11Q mutant polypeptide, found in X-linked mental retardation patients specifically loses the interaction with KCMF1, but not with other RAD6-associated E3 ligases.
|
304 |
Modulation of the deubiquitinating system in viral infection, lymphoid cell activation and malignant transformation /Rolén, Ulrika, January 2007 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2007. / Härtill 3 uppsatser.
|
305 |
A molecular 'switchboard' - lysine modifications and their impact on transcriptionZheng, Gang. Gang, Zheng. January 2006 (has links)
Thesis (Ph. D.)--Case Western Reserve University, 2006. / [School of Medicine] Department of Pharmacology. Includes bibliographical references. Available online via OhioLINK's ETD Center.
|
306 |
MHC Class I Antigen Presentation is Regulated by the SUMO-Conjugating Enzyme UBC9: a DissertationShen, Yuelei 01 June 2003 (has links)
CD8 T cells recognize complexes of MHC class I and peptide on the surface of target cells. MHC class I antigen presentation is a long pathway, in which proteins are degraded by proteasomes to generating oligopeptides, which may be further trimmed by aminopeptidases in the cytosol. Peptides are transported into the ER, where they may be further trimmed by ER lumenal aminopeptidases and bind to newly-synthesized MHC class I complexes. Proteins degraded by the proteasome are generally tagged with ubiquitin by a combination of ubiquitin-conjugating enzymes and ubiquitin ligases. UBC9 is one ubiquitin conjugating enzyme, which does not conjugate ubiquitin, but instead conjugates small ubiquitin-like molecules (SUMO) to target protein. UBC9 has been found to regulate the functions of many proteins in vivo, most importantly by modifying nuclear transportation and function. Curing [During] my thesis work, I studied the function of UBC9 in MHC class I antigen presentation.
UBC9 over-expression in COS cells co-expressing ovalbumin markedly increased presentation SIINFEKL (the immunodominant epitope from ovalbumin in the context of H-2Kb), and UBC9 overexpression increased cell surface H-2Kbin general, suggesting that Ubc9 increased MHC class I antigen presentation by increasing peptide supply.
UBC9 did not increase synthesis or degradation of ovalbumin. In transient transfection experiments, Ubc9 increased presentation of SIINFEKL precursors that did, and that did not, depend on proteasomes for processing, as well as SIINFEKL precursors targeted to the ER, bypassing cytosolic processing altogether. However, a C-terminal extended precursor of SIINFEKL, which requires only proteasomal processing before presentation, was the most markedly affected by UBC9 overexpression. This suggested that UBC9 was affecting the pattern of cleavages made by proteasomes in ways that enhance the generation of the C-terminus of SIINFEKL. Because presentation of SIINFEKL itself (which requires no further proteolytic processing) was also enhanced, UBC9 must also affect steps in the class I pathway that occur after the generation of the mature epitopes. UBC9 did not affect the rate of peptide degradation in cytosolic extracts or in intact cells.
These findings suggested that UBC9 might have multiple effects on the MHC class I antigen presentation pathway. Immunofluorescent microscopy demonstrated that UBC9 increased the expression of the beta subunits of immunoproteasomes (LMP2, LMP7, and MECL1) as well as of TAP1 and tapasin. In contrast, UBC9 expression did not increase levels of calnexin, calreticulin, ERp57, or Protein disulfide isomerase (PDI). Similarly, levels of leucine aminopeptidase were not increased in UBC9-transfected cells. Therefore, UBC9 overexpression increases the levels of some but not all components of the class I pathway.
UBC9 overexpression increased protein levels of MECL1, LMP2 or LMP7 that were under the control of viral promoters, and levels of MECL1 mRNA were similar in control vector and UBC9 transfected cells. Therefore, UBC9 did not increase the level of expression of these subunits through increased transcription. Pulse-chase experiments showed that UBC9 overexpression reduced the degradation of MECL1. Therefore, UBC9 increases the levels of at least some of these components of the MHC class I antigen presentation pathway by increasing their stability.
To know the biological significance of UBC9 in MHC class I antigen presentation, I used small interfering RNA (siRNA) to knock down UBC9. Though UBC9 can be successfully knocked down by siRNA, the UBC9-negative cells became very sick, and were not suitable for the study of MHC class I antigen presentation.
There are three forms of SUMO molecules in mammalian cells: SUMO-1, SUMO-2 and SUMO-3. My study suggested that SUMO-2 may be involved in UBC9's regulation of MHC class I antigen presentation, since mutant SUMO-2 blocked UBC9's ability to increase H-2Kb-SIINFEKL levels on the cell surface after the cells were loaded with ovalbumin.
To further study the function of UBC9, I mutated the active amino acid Cys 93 of UBC9 to Ser (UBC9OH). Unexpectedly, this mutant form (UBC9OH) has very similar effects as wild-type UBC9, increasing Kb-SIINFEKL levels at the cells surface. This suggested that UBC9 protein regulates MHC class I antigen presentation pathway proteins by direct or indirect protein interaction, rather than (or as well as) by SUMO conjugation. Taking account of SUMO-2 results, I propose that wild-type UBC9 (either transfected or endogenous) conjugates SUMO-2 to its substrates, and then UBC9 (wild-type or mutant) interacts with its sumoylated targets, thus affecting protein functions.
I also studied heat shock protein Hsp27, which is known to be a substrate for UBC9 in vivo. Hsp27 is expressed in a variety of tissues in the absence of stress, and may regulate actin dynamics.
Hsp27 overexpression decreased generation of H-2Kb-SIINFEKL complexes from SIINFEKL precursors that did, and did not, require proteasomes for processing, or that were targeted to the ER. Hsp27 over-expression did not affect protein synthesis, and globally decreased cell surface H2-Kb and H2-Dblevels, but did not affect HLA-A0302 level. Hsp27 overexpression inhibits the presentation of ER-localized SIINFEKL. Taken together, my data suggested that HSP27 may inhibit MHC class I antigen presentation by affecting MHC class I molecules itself rather than peptide supply.
After Hsp27 was eliminated with siRNA, the effects were very similar to those seen with Hsp27 overexpression. Levels of H-2Kb-SIINFEKL decreased, and overall cell surface H-2Kb and H-2Db levels decreased. It is possible that when Hsp27 is over-expressed, it acts as a dominant negative form, conferring a similar phenotype to Hsp27 knockdown. These observations suggest that Hsp27 plays an important role in MHC class I antigen presentation.
|
307 |
Degradation mechanisms of TTP/TIS11 proteins, major effectors of the AU-rich element-mediated mRNA decay in eukaryotesVo Ngoc, Long 25 September 2014 (has links)
Regulation of gene expression occurs at several levels in a cell. While control of transcription is often viewed as the main source of regulation, it is now clear that post-transcriptional processes are essential to fine-tune protein availability. The presence of AU-rich elements (ARE) in the 3’ untranslated region (3’UTR) of many important mRNAs exemplifies one such process. AREs alter the mRNA translation or degradation status by recruiting ARE-binding proteins (ARE-BP). ARE-BPs of the TTP/TIS11 family bind to their cognate ARE-RNAs using their conserved tandem zinc-finger domain and induce rapid decay of their targets. This allows for proper regulation of cell proliferation, cell death and inflammation. In this regard, TTP/TIS11 are main regulators of gene expression, and as such are put under strict transcriptional, post-transcriptional as well as several layers of post-translational control.<p>In this work, we aimed at elucidating the degradation mechanisms affecting TTP/TIS11. Using Drosophila as a model, we found that dTIS11 protein turnover is rapid due to continuous degradation by the proteasome. However, proteasomal recognition did not require ubiquitination of dTIS11 as non-ubiquitinable mutants were efficiently degraded by the proteasome. In addition, dTIS11 was digested by the 20S proteasome that lacks ubiquitin-recognition domains. Our results further indicate that intrinsically disordered regions (IDR) in dTIS11 may be responsible for proteasomal recognition. In fact, dTIS11 is predicted as disordered and possesses the main characteristics of intrinsically disordered proteins (IDP). We also identified dTIS11 N- and C-terminal domains as functional signals for degradation, potentially due to their destructuration. This ubiquitination-independent, disorder-dependent degradation process is conserved throughout evolution as dTIS11 mammalian counterpart, TTP, undergoes the same degradation by default pathway. In addition, we established that phosphorylation prevents degradation of TTP/TIS11 by the proteasome. <p>Together, our results pinpoint a new essential characteristic for TTP/TIS11 that may redefine the identity of these proteins. In addition, we unraveled a novel and conserved mechanism of regulation of TTP/TIS11. This control is essential for cell physiology as defects in this process can lead to defects in the inflammatory response, increased radiation-induced lung toxicity and tumorigenesis.<p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
308 |
Structural analysis of yeast amino acid transporters: substrate binding and substrate-induced endocytosisGhaddar, Kassem 03 April 2014 (has links)
Plasma membrane transport proteins play a crucial role in all cells by conferring to the cell surface a selective permeability to a wide range of ions and small molecules. The activity of these transporters is often regulated by controlling their amount at the plasma membrane, via intracellular trafficking. The recent boom in the numbers of crystallized transporters shows that many of them that belong to different functional families with little sequence similarity adopt the same structural fold implying a conserved transport mechanism. These proteins belong to the APC (Amino acid-Polyamine-organoCation) superfamily and their fold is typified by the bacterial leucine transporter LeuT. This LeuT fold is characterized by inverted structural repeats of 5 transmembrane domains that harbor the central substrate-binding site and a pseudo-symmetry axis parallel to the membrane. The yeast Saccharomyces cerevisiae possesses about 16 amino acid permeases (yAAPs) that belong to the APC superfamily and that display various substrate specificity ranges and affinities. Topological, mutational analysis and in silico data indicate that yAAPS adopt the LeuT fold.<p><p>In this work we combined computational modeling and yeast genetics to study substrate binding by yAAPs and the endocytosis of these transporters in response to substrate transport. In the first part of this work, we analyzed the selective recognition of arginine by the yeast specific arginine permease, Can1. We constructed three-dimensional models of Can1 using as a template the recently resolved structure of AdiC, the bacterial arginine:agmatine antiporter, which is also a member of the APC superfamily. By comparison of the binding pockets of Can1 and Lyp1, the yeast specific lysine permease, we identified key residues that are involved in the recognition of the main and side chains of arginine. We first showed that the network of interactions of arginine in Can1 is similar to that of AdiC, and that the selective recognition of arginine is mediated by two residues: Asn 176 and Thr 456. Substituting these residues by their corresponding residues in Lyp1 converted Can1 into a specific lysine permease. In the second part of this work, we studied the regulation of two permeases, Can1 and the yeast general amino acid permease, Gap1. In the presence of their substrates, Gap1 and Can1 undergo ubiquitin-dependent endocytosis and targeting to the vacuolar lumen for degradation. We showed that this downregulation is not due to intracellular accumulation of the transported amino acids but to transport catalysis itself. By permease structural modeling, mutagenesis, and kinetic parameter analysis, we showed that Gap1 and Can1 need to switch to an intermediary conformational state and persist a minimal time in this state after binding the substrate to trigger their endocytosis. This down-regulation depends on the Rsp5 ubiquitin ligase and involves the recruitment of arrestin-like adaptors, resulting in the ubiquitylation and endocytosis of the permease.<p><p>Our work shows the importance of the structural analysis of yAAPs to get further insight into the different aspects of their function and regulation. We validate the use of a bacterial APC transporter, AdiC, to construct three-dimensional models of yAAPs that can be used to guide experimental analyses and to provide a molecular framework for data interpretation. Our results contribute to a better understating of the recognition mode of amino acids by their permeases, and the regulation of this transport in response to substrate binding. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
309 |
Role of sphingolipids and polyubiquitin chains in intracellular trafficking of the yeast GAP1 permeaseLauwers, Elsa 24 October 2007 (has links)
In the past fifteen years, ubiquitin has emerged as a central regulator of membrane protein trafficking. In this context, covalent attachment of this small protein to lysine residues of cargo proteins, a reversible modification termed ubiquitylation, provides a signal for their targeting to the vacuolar/lysosomal lumen where they are degraded, both in yeast and higher eukaryotes. Ubiquitylation is also used as a means of controlling the function of specific proteins in several trafficking machineries. The role of lipids - and in particular of membrane domains named lipid rafts - in controlling the intracellular trafficking of membrane proteins has also been the subject of intense investigation in recent years.<p>One of the membrane proteins of the yeast Saccharomyces cerevisiae whose intracellular trafficking has been extensively studied is the general amino acid permease Gap1. Yet some aspects of the function of ubiquitin in the nitrogen-dependent control of this protein remain controversial. Moreover, the potential role of lipid rafts in regulating the functional properties and traffic of the Gap1 permease had not been investigated before this thesis work. <p>The first part of our work readdresses the role of Gap1 ubiquitylation, and more precisely of the modification of the permease with polyubiquitin chains linked through the lysine 63 of ubiquitin, in controlling the fate of this protein in the secretory pathway. Our observations indicate that nitrogen-induced ubiquitylation of newly synthesised Gap1 occurs in the trans-Golgi complex. However, contrary to the generally accepted view, this modification is not necessary for the permease to exit this compartment en route to the endosome but only for its subsequent targeting to the vacuolar lumen via the multivesicular body (MVB) pathway. Our results also provide evidence that K63-linked polyubiquitylation is important mostly at the late endosomal level, for proper sorting of Gap1 into the MVB pathway, whether the permease comes from the cell surface by endocytosis or directly from the secretory pathway. <p>In the second part of this work, we present a set of data providing novel insights into the controversial question of the exact nature of lipid rafts in yeast. We first showed that the Gap1 permease is associated with detergent-resistant membranes (DRMs) - the proposed biochemical equivalent of lipid rafts - when it is located at the cell surface. Our data further suggest that this may be true for most if not all yeast plasma membrane proteins. Moreover, we found that Gap1 production must be coupled to de novo synthesis of sphingolipids (SLs), major constituents of rafts, in order for the newly synthesised permease to be correctly folded, active, associated with DRMs, and stable at the cell surface. We propose a model where Gap1 would associate with newly synthesised SLs during its biogenesis and/or secretion, this association shaping the permease into its native conformation and ensuring its incorporation and stabilisation in specific lipid domains at the plasma membrane. Failure of Gap1 to acquire this lipidic microenvironment in turns leads to its ubiquitin-dependent degradation by a quality-control mechanism. This model might be valid for many other plasma membrane proteins and might account for their lateral distribution between distinct membrane domains. <p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
310 |
Role of Bro1, the yeast homologue of Mammalian Alix, in ubiquitin-dependent protein sorting into the multivesicular body (MVB) pathwayNikko, Elina 18 February 2005 (has links)
Degradation of membrane proteins in the vacuole/lysosome is dependent on their prior sorting into the multivesicular body (MVB) pathway. This sorting process involves incorporation of proteins into vesicles that are formed by budding of the limiting membrane of the endosome into the lumen of the organelle. The MVB sorting process on the whole is highly conserved from yeast to human, and depends on the Vps27/Hrs, ESCRT-I, -II, and -III protein complexes functioning sequentially on the endosomal membrane, as well as on additional factors, such as the ubiquitinating enzyme Rsp5/Nedd4. It has now been established that ubiquitin serves as a sorting signal for many cargoes into the MVB pathway. <p>In this thesis work, we provide evidence that Bro1 is not required for protein ubiquitination or early steps of endocytosis, but functions at the late endosome level as an integral component of the MVB pathway. Similarly to its human homologue Alix, Bro1 interacts with components of the ESCRT-I and ESCRT-III complexes. The putative role of Bro1/Alix in bridging an interaction between ESCRT-I and –III might be important to strengthen an association of these protein complexes to allow efficient sorting of cargo proteins. Deficiency in Bro1 results in recycling of the endocytosed Gap1 permease back to the plasma membrane, a process coupled to deubiquitination of the permease. This recycling is a non-classical phenotype for cells impaired in MVB pathway thus suggesting Bro1 to have a particular role in this sorting process. Furthermore, the conserved C-terminal proline-rich domain (PRD) of Bro1 is specifically important for MVB sorting of cargo proteins that are subject to ubiquitination. We show Bro1 (via its PRD) to play a highly important role in recruitment of the deubiquitinating enzyme Doa4 to the endosome. Consistent with this, Bro1 is required for deubiquitination of cargo proteins, a step occurring just before cargo incorporation into the endosomal vesicles, and similarly to Doa4, for ubiquitin recycling. In contrast to previous interpretations, we show that Doa4 has a direct role in sorting of ubiquitinated cargo proteins into the MVB pathway. We propose that Doa4 – via its association to Bro1 - achieves this role by catalyzing deubiquitination of cargo proteins and/or some components of the MVB sorting machinery. We further show Bro1 to interact with the ubiquitin ligase Rsp5, which, in addition to being required for cargo protein ubiquitination at the plasma membrane, apparently contributes to multiple steps of endocytosis and MVB sorting. Also the Bro1-Rsp5 interaction is dependent on the C-terminal PRD region of Bro1. We propose that this interaction is conserved. <p>A role for ubiquitin in regulation of the MVB sorting machinery is emerging: the function of factors recognizing and sorting ubiquitinated cargo proteins in the MVB pathway is suggested to be coupled to their cycling between ubiquitinated and deubiquitinated stages. A growing body of evidence indicates that ubiquitin ligases of the Rsp5/Nedd4 family play a central role in this regulation. We speculate the Bro1/Alix protein, through its ability to simultaneously interact with factors of the MVB sorting machinery and with ubiquitinating and deubiquitinating enzymes to play a central role in the successive rounds of ubiquitination and deubiquitination of specific factors along the MVB pathway. <p> / Doctorat en sciences, Spécialisation biologie moléculaire / info:eu-repo/semantics/nonPublished
|
Page generated in 0.0594 seconds