Spelling suggestions: "subject:"ultrahigh performance concrete"" "subject:"ultrahign performance concrete""
31 |
Bending performance of SFCBs reinforced UHPC beams prestressed with FRP barsGe, W., Zhang, F., Sushant, S., Ashour, Ashraf, Chen, K., Fu, S., Qiu, L., Luo, L., Cao, D. 27 December 2024 (has links)
Yes / This study investigates the bending performance of ultra-high-performance concrete (UHPC) beams reinforced with non-prestressed steel-FRP composite bars (SFCBs) and prestressed fiber-reinforced polymer (FRP) bars. The finite element software ABAQUS was used to simulate the strain behaviors of materials, applying a real strain model for concrete and equivalent plastic strain models for reinforcements. Six beams with different concrete types and reinforcements (prestressed or non-prestressed) were simulated and analyzed. These simulations yielded results that closely aligned with the results tested. Based on the validated FE models, a parametric analysis was conducted to examine the effects of mechanical properties of concrete, mechanical property of non-prestressed reinforcement, and the reinforcement ratio of prestressed FRP bars and non-prestressed SFCB on the bending performance of SFCBs reinforced UHPC beams prestressed with FRP bars. The results indicate that, as the concrete strength increases from C35 to UHPC140, both the bearing capacity and ultimate deflection of flexural beams exhibit a gradual increase. Notably, employing UHPC100 as the matrix results in specimens achieving the highest ductility, deformation, and energy absorption. When non-prestressed FRP bars are replaced by SFCBs, the ultimate load of the beams decreases by 8%, but energy absorption increases by 34%. With an increase in the steel ratio of SFCBs, the ductility, deformation, and energy absorption also gradually increase. Moreover, increasing the reinforcement ratio of both prestressed FRP and non-prestressed SFCBs results in an increase in bearing capacity, but a decrease in ultimate deflection, ductility, deformation, and energy absorption capacity. This research can provide valuable technical references for the analysis and design of UHPC beams reinforced with SFCBs and prestressed FRP bars. / Financial support from the National Natural Science Foundation of China (52378201),the High-End Foreign Experts Project of Ministry of Science and Technology, China (G2022014054L), the Jiangsu Construction System Science and Technology Project (2023ZD104 and 2023ZD105), the Nantong Jianghai Talents Project (226), the Science and Technology Project of Yangzhou Construction System (202309 and 202312) and the Research Project of Jiangsu Civil Engineering and Architecture Society (the Second Half of 2022).
|
32 |
Reforço de pilares curtos de concreto armado por encamisamento com concreto de ultra-alto desempenho / Strengthening of short columns with jacketing for ultra-high performance concreteEnami, Rodrigo Mazia 16 October 2017 (has links)
O presente trabalho avaliou a influência dos concretos de ultra-alto desempenho com fibras (UHPFRC) e sem fibras (UHPC) no reforço de pilares curtos de concreto armado de seção transversal circular e quadrada. Avaliou-se também a adição de armaduras adicionais de reforço e de polímeros reforçados com fibras de carbono (PRFC) em alguns pilares reforçados. Para a avaliação deste novo sistema de reforço optou-se pela realização de um programa experimental e simulações numéricas. É importante ressaltar que no programa experimental, nenhum pilar reforçado possuía seção transversal maior que a seção do pilar de referência. Foi verificado por meio do programa experimental, que as camisas de UHPC apresentaram ruína de natureza frágil e não se recomenda a sua utilização a menos que acompanhada de mecanismos que garantam adequado confinamento do pilar reforçado. Nos pilares circulares e quadrados reforçados com UHPFRC foram verificados, respectivamente, incrementos de resistência de 106,4% e 83,6% onde o concreto do cobrimento foi substituído por UHPFRC, 154,3% e 111,7% onde além da substituição do cobrimento foram inseridas armaduras adicionais e 160% e 85,6% onde houve a colocação de PRFC após a substituição do cobrimento. Todos os pilares reforçados com UHPFRC não apresentaram destacamento da camisa de reforço. Foram realizadas simulações numéricas variando a espessura da camisa de UHPFRC e do número de camadas de PRFC tanto nos pilares de seção circular como nos pilares de seção quadrada. Por meio destas simulações, notou-se que a adição de pequenos incrementos de espessura da camisa de UHPFRC, proporciona elevados incrementos de resistência ao pilar reforçado, ao passo que o aumento do número de camadas de PRFC não influenciaria significantemente no incremento de resistência e sim na ductilidade do conjunto. / The present work evaluated the influence of ultra-high performance concrete with fibers (UHPFRC) and without fibers (UHPC) on the strengthening of short columns of reinforced concrete of circular and square cross section. It was also evaluated the addition of additional reinforcement and carbon fiber reinforced polymers (PRFC) on some strengthened columns. For the evaluation of this new system of strengthening we opted for the realization of an experimental program and numerical simulations. It is important to note that in the experimental program, no strengthened columns had a larger cross section than the reference column section. It was verified through the experimental program that the UHPC shirts presented ruin of a fragile nature and their use is not recommended unless accompanied by mechanisms that guarantee adequate confinement to the strengthened columns. In the circular and square columns strengthened with UHPFRC, respectively, resistance increments of 106.4% and 83.6% were verified, where the cover concrete was replaced by UHPFRC, 154.3% and 111.7%, in addition to the substitution of additional reinforcement were inserted and 160% and 85.6% where PRFC placement was performed after the replacement of the cover. All strengthened columns with UHPFRC did not present detachment of the strengthening jacket. Numerical simulations were performed by varying the thickness of the UHPFRC jacket and the number of PRFC layers on both the circular section columns and the square section columns. Through these simulations, it was noted that the addition of small thickness increments of the UHPFRC jacket would provide high increments of strength to the strengthened columns, while increasing the number of PRFC layers would not significantly influence the increase in strength but rather ductility of the assembly.
|
33 |
Reforço de pilares curtos de concreto armado por encamisamento com concreto de ultra-alto desempenho / Strengthening of short columns with jacketing for ultra-high performance concreteRodrigo Mazia Enami 16 October 2017 (has links)
O presente trabalho avaliou a influência dos concretos de ultra-alto desempenho com fibras (UHPFRC) e sem fibras (UHPC) no reforço de pilares curtos de concreto armado de seção transversal circular e quadrada. Avaliou-se também a adição de armaduras adicionais de reforço e de polímeros reforçados com fibras de carbono (PRFC) em alguns pilares reforçados. Para a avaliação deste novo sistema de reforço optou-se pela realização de um programa experimental e simulações numéricas. É importante ressaltar que no programa experimental, nenhum pilar reforçado possuía seção transversal maior que a seção do pilar de referência. Foi verificado por meio do programa experimental, que as camisas de UHPC apresentaram ruína de natureza frágil e não se recomenda a sua utilização a menos que acompanhada de mecanismos que garantam adequado confinamento do pilar reforçado. Nos pilares circulares e quadrados reforçados com UHPFRC foram verificados, respectivamente, incrementos de resistência de 106,4% e 83,6% onde o concreto do cobrimento foi substituído por UHPFRC, 154,3% e 111,7% onde além da substituição do cobrimento foram inseridas armaduras adicionais e 160% e 85,6% onde houve a colocação de PRFC após a substituição do cobrimento. Todos os pilares reforçados com UHPFRC não apresentaram destacamento da camisa de reforço. Foram realizadas simulações numéricas variando a espessura da camisa de UHPFRC e do número de camadas de PRFC tanto nos pilares de seção circular como nos pilares de seção quadrada. Por meio destas simulações, notou-se que a adição de pequenos incrementos de espessura da camisa de UHPFRC, proporciona elevados incrementos de resistência ao pilar reforçado, ao passo que o aumento do número de camadas de PRFC não influenciaria significantemente no incremento de resistência e sim na ductilidade do conjunto. / The present work evaluated the influence of ultra-high performance concrete with fibers (UHPFRC) and without fibers (UHPC) on the strengthening of short columns of reinforced concrete of circular and square cross section. It was also evaluated the addition of additional reinforcement and carbon fiber reinforced polymers (PRFC) on some strengthened columns. For the evaluation of this new system of strengthening we opted for the realization of an experimental program and numerical simulations. It is important to note that in the experimental program, no strengthened columns had a larger cross section than the reference column section. It was verified through the experimental program that the UHPC shirts presented ruin of a fragile nature and their use is not recommended unless accompanied by mechanisms that guarantee adequate confinement to the strengthened columns. In the circular and square columns strengthened with UHPFRC, respectively, resistance increments of 106.4% and 83.6% were verified, where the cover concrete was replaced by UHPFRC, 154.3% and 111.7%, in addition to the substitution of additional reinforcement were inserted and 160% and 85.6% where PRFC placement was performed after the replacement of the cover. All strengthened columns with UHPFRC did not present detachment of the strengthening jacket. Numerical simulations were performed by varying the thickness of the UHPFRC jacket and the number of PRFC layers on both the circular section columns and the square section columns. Through these simulations, it was noted that the addition of small thickness increments of the UHPFRC jacket would provide high increments of strength to the strengthened columns, while increasing the number of PRFC layers would not significantly influence the increase in strength but rather ductility of the assembly.
|
34 |
Mechanical Property Development and Numerical Modeling of Ultra-High Performance Concrete Focused on Isothermal Curing ConditionsAllard, Thomas 14 December 2018 (has links)
Ultra-high performance concrete (UHPC) has progressively gained interest because of its favorable strength and durability properties. Literature shows that curing temperature has a significant effect on the resultant mechanical properties of UHPC, generally resulting in increased compressive strength. However, limited datasets are currently available to ascertain the degree of change related to compressive strength as a function of curing temperature and conditions. This study investigates the effect of isothermal and submerged curing temperature conditions, ranging from 10°C to 90°C, on the compressive strength and elastic modulus development of UHPC and generates a numerical model to capture these effects. The extent and rate of compressive strength development in Cor-Tuf UHPC was found to increase with curing temperature, while only the rate of elastic modulus development increased with curing temperature. The numerical model shows reasonable agreement when compared with the experimental results and was successfully implemented in finite element analysis software.
|
35 |
[pt] COMPORTAMENTO MECÂNICO DE VIGAS DE CONCRETO DE ULTRA-ALTO DESEMPENHO / [en] MECHANICAL BEHAVIOR OF ULTRA-HIGH PERFORMANCE CONCRETE BEAMSPATRICIA BARRETO DE LIMA 03 January 2022 (has links)
[pt] O presente trabalho avalia o efeito da utilização de concreto de ultra-alto desempenho (CUAD) em elementos estruturais, analisando seu comportamento à flexão e o impacto da utilização desse material no seu dimensionamento. Através de ensaios de caracterização do material, foram estudadas as suas propriedades mecânicas. Os resultados dos testes já apresentavam resistência à compressão de 104 MPa com 7 dias de idade e 142 MPa aos 28 dias de idade, além de um aumento na capacidade de carga e na ductilidade dos corpos de prova com o aumento da quantidade de fibras utilizadas no CUAD. Na escala estrutural, foram analisadas quatro vigas de concreto armado, onde duas foram produzidas com concreto de ultra-alto desempenho e duas com concreto convencional (CC), com taxa de armaduras de 0,44 por cento e 1,78 por cento. Primeiramente foi realizada uma análise comparativa dos resultados dos momentos obtidos experimentalmente e teoricamente (baseado nas normas NBR 6118:2014, ACI 544.4R-18 e Model Code 2010) não apresentando diferença significativa. Posteriormente, através dos resultados dos ensaios foi possível verificar que, a utilização do CUAD melhora, no geral, as propriedades mecânicas dos elementos analisados. A utilização do CUAD em vigas subarmadas apresenta resultados similares às vigas normalmente armadas com CC. Além disso, quando combinadas a utilização do CUAD com o aumento da taxa de armaduras, os resultados melhoram significativamente, apresentando, por exemplo um ganho na capacidade de carga de aproximadamente 40 por cento no aumento da taxa geométrica de armaduras e de 75 por cento com o aumento da taxa de armaduras combinada com a utilização do CUAD. / [en] The present work evaluates the effect of the use of ultra-high performance concrete (UHPC) in structural elements, analyzing its behavior to bending and the impact of the use of this material on its dimensioning. Through tests of characterization of the material, its mechanical properties were studied. The results of the tests already presented compressive strength of 104 Mpa at 7 days of age and 142 Mpa at 28 days of age, in addition to an increase in load capacity and ductility of the specimens with the increase in the amount of fibers used in the UHPC. In the structural scale, four reinforced concrete beams were analyzed, two of which were produced with ultra-high performance concrete and two with conventional concrete (CC), with an armor rate of 0.44 percent and 1.78 percent. First, a comparative analysis of the results of the moments obtained experimentally and theoretically (based on the norms NBR 6118:2014, ACI 544.4R-18 and Model Code 2010) was performed, with no significant difference. Subsequently, through the results of the tests it was possible to verify that the use of UHPC improves, in general, the mechanical properties of the analyzed elements. The use of UHPC in underarmed beams presents similar results to beams normally armed with CC. In addition, when combined with the use of UHPC with increased reinforcement rate, the results improve significantly, presenting, for example, a gain in load capacity of approximately 40 percent in the increase in the geometric rate of reinforcements and 75 percent with the increase in the reinforcement rate combined with the use of UHPC.
|
36 |
[pt] COMPORTAMENTO À FADIGA NA FLEXÃO DO CONCRETO DE ULTRA-ALTO DESEMPENHO / [en] FLEXURAL FATIGUE BEHAVIOR OF ULTRA-HIGH PERFORMANCE CONCRETENABILA REZENDE DE ALMEIDA CERQUEIRA 09 June 2022 (has links)
[pt] O concreto de ultra-alto desempenho (CUAD) é um material cimentício
avançado que possui excelente desempenho mecânico, ductilidade e durabilidade
devido a uma elevada densidade de empacotamento e ao uso de fibras, promovendo
benefícios à vida útil das estruturas. Grande parte das estruturas está sujeita a ações
cíclicas, ou seja, variáveis com o tempo, resultando em danos de fadiga, como o
surgimento e a propagação de trincas, que podem comprometer sua integridade.
Assim, é essencial compreender o comportamento dos materiais sob fadiga para
que sejam propostas diretrizes de projeto seguras e adequadas ao bom
funcionamento das estruturas. Este trabalho visa, portanto, investigar o
comportamento do concreto de ultra-alto desempenho pré-fissurado sob fadiga na
flexão, quantificando sua degradação mecânica ao longo do carregamento cíclico a
partir dos parâmetros de abertura de fissura (CMOD) e rigidez, contribuindo para o
estudo desse tipo especial de concreto. Foram propostas equações para prever a vida
à fadiga em relação ao limite superior de carga e estabelecer o limite de fadiga do
concreto de ultra-alto desempenho, igual a 75,3 por cento, considerando o limite inferior
igual a 30 cento do limite superior. Ainda, avaliou-se o comportamento pós-fadiga de
amostras que não sofreram ruptura ao longo de 1.000.000 de ciclos, sendo possível
observar que o mecanismo não gerou alterações no desempenho das amostras sob
flexão para limites inferiores ao limite de fadiga. / [en] Ultra-high Performance Concrete (UHPC) is an advanced cementitious
material that has excellent mechanical performance, ductility and durability due to
a high packing density and the use of fibers, contributing to increase the structures
lifespan. Most of the structures are subject to cyclic loads, which vary with time,
resulting in fatigue damage such as the formation and propagation of cracks that
could compromise its integrity. Thus, it is essential to understand the behavior of
materials subjected to fatigue so that safe and proper design guidelines can be
proposed for the appropriate performance of the structures. Therefore, this work
aims to investigate the behavior of pre-cracked ultra-high performance concrete
under flexural fatigue, quantifying its mechanical deterioration during cyclic
loading through both crack mouth opening displacement (CMOD) and stiffness,
which will contribute to the study of this special type of concrete. Equations were
proposed to predict fatigue life according to the upper load limit during the cyclic
loading and to establish the endurance limit of ultra-high performance concrete in
75,3 percent, considering the lower limit load equal to 30 percent of the upper limit. Also, when
evaluating the post-fatigue behavior of samples that did not fail over 1,000,000
cycles it was possible to identify that the cyclic loading did not change the
performance of the samples under bending, which was due to the use of upper loads
below the endurance limit.
|
37 |
Shear behavior of FRP-UHPC composite beams enhanced by FRP shear key: Experimental study and theoretical analysisZhang, Z., Ashour, Ashraf, Ge, W. 06 November 2024 (has links)
Yes / To investigate the shear behavior of FRP (fiber reinforced polymers)-UHPC (ultra-high performance concrete) composite beams, four-point bending tests were conducted on seven FRP-UHPC specimens and two FRP-NSC (normal strength concrete) specimens, having different width and depth of concrete flange as well as FRP shear key (FSK) spacing. The slip between FRP profiles and concrete flange was controlled by employing FSK and epoxy resin bonded hybrid connection. The failure pattern, load-deflection/strain curves, and sliding response of composite beams were analyzed to study the influence of concrete type, FSK spacing, width and thickness of concrete slab. The results indicate that FRP-UHPC composite beams exhibited shear failure, while FRP-NSC composite beams experienced bending-shear failure. The composite beams demonstrated shear-lag effect, which became more pronounced with the increasing of the concrete slab width. The use of UHPC, reducing FSK spacing, and increasing the size of cross-section of concrete flange can effectively enhance the shear performance and reduce interface sliding. Formulae were developed to predict the shear capacity and deflection, considering shear deformation. The results predicted by the formulae developed match well with the experimental results. / The full text will be available at the end of the publisher's embargo: 11th Nov 2025
|
38 |
Blast-resistance characteristics and design of steel wire reinforced ultra-high performance concrete slabsWu, Q., Wang, X., Ashour, Ashraf, Sun, T., Dong, S., Han, B. 25 July 2024 (has links)
Yes / Steel wire reinforced ultra-high performance concrete (SWRUHPC) offers exceptional resistance to impacts and blast, making it a promising construction material for infrastructure with blast-resistance demands. However, limited research has been conducted on the blast-resistance characteristics and design of SWRUHPC elements under blast loading, particularly in considering multiple influencing parameters and levels. Therefore, this study employed finite element simulation methods to investigate the influence of scaled distance (Z), reinforcement ratio (ρ) and slab thickness (D) as well as slab length (L) on the failure mode and maximum deflection of SWRUHPC slabs. Range analysis and variance analysis methods were used to quantitively analyze the effects of various factors on the blast resistance performance, culminating in the proposal of a design formula for SWRUHPC slabs. The results demonstrated that SWRUHPC exhibits superior blast resistance compared to ordinary concrete, effectively reducing the occurrence of concrete spalling and splashing, thus enhancing overall structural resilience in blast scenarios. Among the four factors analyzed, their influence on maximum deflection follows this order: D > Z > ρ > L. Notably, the maximum deflection decreases by 82% when the slab thickness increases from 40 mm to 90 mm. Additionally, the established design formula for SWRUHPC slabs under different scaled distances shows good agreement with the numerical simulation results, offering valuable design guidelines for SWRUHPC slabs in protective engineering structures. / National Science Foundation of China (52308236 and 52368031), and the Major Science and Technology Research Project of the China Building Materials Federation (2023JBGS10-02), Natural Science Joint Foundation of Liaoning Province (2023-BSBA-077), and the Fundamental Research Funds for the Central Universities (DUT24GJ202). / The full text will be available at the end of the publisher's embargo: 22nd July 2025
|
39 |
[pt] ANÁLISE NUMÉRICA E COMPORTAMENTO MECÂNICO EXPERIMENTAL DE VIGAS DE UHPC COM SEÇÃO TRANSVERSAL OTIMIZADA / [en] NUMERICAL ANALYSIS AND EXPERIMENTAL MECHANICAL BEHAVIOR OF UHPC BEAMS WITH OPTIMIZED CROSS-SECTIONPAULO HENRIQUE MARANGONI FEGHALI 11 November 2024 (has links)
[pt] O concreto de ultra alto desempenho (UHPC) reforçado com fibras é um material que foi
desenvolvido nas últimas décadas para atender à necessidade de estruturas modernas por
um material mais resistente e durável. Suas características altamente não lineares tanto
na tração quanto na compressão levam a um comportamento complexo. Além disso, a
distribuição não homogênea das fibras e a alta resistência à tração, quando comparada ao
concreto convencional, resultam em menor ductilidade para vigas de UHPC. A análise de
elementos finitos mostra ser uma ferramenta adequada para representar a resposta de
elementos estruturais de UHPC, mas a calibragem do modelo deve ser aplicada
corretamente e técnicas de modelagem coerentes devem ser usadas para representar
corretamente os tramos pós-pico de curvas força-deslocamento para vigas de UHPC
submetidas a testes de flexão de quatro pontos. Foi realizada uma extensa caracterização
do material tanto em tração quanto em compressão. Testes axiais monotônicos foram
conduzidos para obter curvas tensão-deformação na compressão e tensão-abertura de
fissura na tração. Testes cíclicos foram realizados para determinar a evolução do dano
experimental em compressão e na tração. Esses dados serviram como referência para
calibrar modelos uniaxiais e modelos de evolução de dano de acordo com expressões
analíticas disponíveis na literatura. Modelos heterogêneos simulando a dispersão do
material nas propriedades mecânicas do UHPC ao longo do volume das vigas foram
utilizados para obter uma seção transversal que apresentasse resistência otimizada,
mantendo a ductilidade desejada. Finalmente, cinco vigas foram testadas, com diferentes
formas e porcentagens de reforço, e estratégias de modelagem foram comparadas aos
dados experimentais das vigas. / [en] Ultra-high performance concrete is a material which has been developed in the last
decades to fulfill modern structures need for a more resistant and durable material. Its
highly nonlinear characteristics in both tension and compression leads to a complex
behavior. In addition to that, the inhomogeneous distribution of the fibers and the high
tensile strength when compared to conventional concrete result in reduced ductility for
UHPC beams. Finite element analysis is shown to be an adequate tool to represent UHPC
structural element s response but the model calibration must be correctly applied and
coherent modeling techniques must be used to correctly model the post-peak branches of
load-displacement curves for UHPC beams subjected to four-point load bending tests. An
extensive material characterization in both tension and compression was conducted.
Monotonic axial tests were conducted to obtain stress-strain curves in compression and
stress-crack opening in tension and cyclic tests were made to determine the experimental
damage evolution in compression and in tension. These data served as input to calibrate
uniaxial models and damage evolution models according to analytical expressions
available in the literature. Heterogeneous models simulating the material dispersion of
the mechanical properties of the UHPC over structural beams were used to obtain a cross-section that presented optimized resistance while maintaining target ductility. Finally,
five beams were tested, with different shapes and reinforcement ratios and the modeling
strategies were benchmarked to the beams experimental data.
|
40 |
Performance of Steel Fibre Reinforced Concrete Columns under Shock Tube Induced Shock Wave LoadingBurrell, Russell P. 19 November 2012 (has links)
It is important to ensure that vulnerable structures (federal and provincial offices, military structures, embassies, etc) are blast resistant to safeguard life and critical infrastructure. In the wake of recent malicious attacks and accidental explosions, it is becoming increasingly important to ensure that columns in structures are properly detailed to provide the ductility and continuity necessary to prevent progressive collapse. Research has shown that steel fibre reinforced concrete (SFRC) can enhance many of the properties of concrete, including improved post-cracking tensile capacity, enhanced shear resistance, and increased ductility. The enhanced properties of SFRC make it an ideal candidate for use in the blast resistant design of structures. There is limited research on the behaviour of SFRC under high strain rates, including impact and blast loading, and some of this data is conflicting, with some researchers showing that the additional ductility normally evident in SFRC is absent or reduced at high strain loading. On the other hand, other data indicates that SFRC can improve toughness and energy-absorption capacity under extreme loading conditions. This thesis presents the results of experimental research involving tests of scaled reinforced concrete columns exposed to shock wave induced impulsive loads using the University of Ottawa Shock Tube.
A total of 13 half-scale steel fibre reinforced concrete columns, 8 with normal strength steel fibre reinforced concrete (SFRC) and 5 with an ultra high performance fibre reinforced concrete (UHPFRC), were constructed and tested under simulated blast pressures. The columns were designed according to CSA A23.3 standards for both seismic and non-seismic regions, using various fibre amounts and types. Each column was exposed to similar shock wave loads in order to provide direct comparisons between seismic and non-seismically detailed columns, amount of steel fibres, type of steel fibres, and type of concrete.
The dynamic response of the columns tested in the experimental program is predicted by generating dynamic load-deformation resistance functions for SFRC and UHPFRC columns and using single degree of freedom dynamic analysis software, RCBlast. The analytical results are compared to experimental data, and shown to accurately predict the maximum mid-span displacements of the fibre reinforced concrete columns under shock wave loading.
|
Page generated in 0.0831 seconds