• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 7
  • 1
  • Tagged with
  • 15
  • 15
  • 10
  • 10
  • 10
  • 10
  • 7
  • 7
  • 7
  • 7
  • 5
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ultrahochfester Beton unter Teilflächenbelastung /

Klotz, Sven. January 2008 (has links)
Zugl.: Leipzig, Universiẗat, Diss., 2008.
2

Rissbildung und Zugtragverhalten von mit Stabstahl und Fasern bewehrtem ultrahochfesten Beton (UHPC) /

Leutbecher, Torsten. January 2008 (has links)
Universiẗat, Diss.--Kassel, 2007.
3

Rissbildung und Zugtragverhalten von mit Stabstahl und Fasern bewehrtem ultrahochfesten Beton (UHPC)

Leutbecher, Torsten January 2007 (has links)
Zugl.: Kassel, Univ., Diss., 2007
4

Modellierung von ultrahochfestem Beton (UHPC) unter Impaktbelastung Auslegung eines Hochhauskerns gegen Flugzeuganprall

Nöldgen, Markus January 2009 (has links)
Zugl.: Kassel, Univ., Diss., 2009 / Zusätzliches Online-Angebot unter urn:nbn:de:0002-8639
5

Rissbildung und Zugtragverhalten von mit Stabstahl und Fasern bewehrtem Ultrahochfesten Beton (UHPC)

Leutbecher, Torsten. January 1900 (has links)
Univ., Diss., 2007--Kassel.
6

Versuchstechnische Ermittlung und mathematische Beschreibung der mehraxialen Festigkeit von ultra-hochfestem Beton (UHPC) - Zweiaxiale Druckfestigkeit; Im Rahmen des Schwerpunktprogramms 1182 Nachhaltiges Bauen mit Ultra-Hochfestem Beton (UHPC) / Experimental Investigation and Mathematical Analysis of Multiaxial Strength of Ultra High Performance Concrete (UHPC) - Biaxial Compressive Strength

Curbach, Manfred, Speck, Kerstin 18 September 2007 (has links) (PDF)
Der vorliegende Bericht beschreibt das Verhalten von ultrahochfestem Beton unter zweiaxialer Druckbeanspruchung. Bisher wurden ein Feinkornbeton und zwei Grobkornbetone mit unterschiedlichen Faserzusätzen untersucht. Die Zylinderdruckfestigkeiten nach 28 Tagen betragen rund 150, 160 und 170 N/mm². Besonders bei dem Feinkornbeton wurde eine überwiegend horizontale Ausrichtung der Stahlfasern festgestellt, die zu einer Anisotropie im Materialverhalten führte. Zusammenfassend muss festgestellt werden, dass die zweiaxiale Druckfestigkeit von UHPC nur geringfügig größer ist als die einaxiale. Für die Mischungen mit 2,5 Vol.-% Fasergehalt übersteigt die Festigkeit bei einem Spannungsverhältnis von Spannung 1 zu Spannung 2 gleich Eins die einaxiale Festigkeit um 7 bzw. 10 %. Bei dem Beton mit 0,9 Vol.-% Fasergehalt lag diese zweiaxiale Festigkeit sogar geringfügig unter der einaxialen. Bei der Bemessung von UHPC dürfen somit die vom Normalbeton bekannten Festigkeitssteigerungen unter mehraxialer Druckbelastung, wie sie z.B. bei reinen Druckknoten von Stabwerkmodellen angesetzt werden, nicht verwendet werden! Für die Beschreibung der Bruchkurve kann nach jetzigem Erkenntnisstand das Bruchkriterium nach OTTOSEN als eine gute Näherung empfohlen werden. Die Versuche haben gezeigt, dass sich UHPC in vielen, zum Teil sicherheitsrelevanten Bereichen anders verhält als Normalbeton. Für eine umfassende Beschreibung des Tragverhaltens sind weitere Versuche unter dreiaxiale Druckbelastung und kombinierter Druck-Zug-Belastung notwendig.
7

Versuchstechnische Ermittlung und mathematische Beschreibung der mehraxialen Festigkeit von ultra-hochfestem Beton (UHPC) - Zweiaxiale Druckfestigkeit; Im Rahmen des Schwerpunktprogramms 1182 Nachhaltiges Bauen mit Ultra-Hochfestem Beton (UHPC): Arbeitsbericht an die Deutsche Forschungsgemeinschaft (DFG) zum Forschungsvorhaben CU 37/6-1

Curbach, Manfred, Speck, Kerstin 18 September 2007 (has links)
Der vorliegende Bericht beschreibt das Verhalten von ultrahochfestem Beton unter zweiaxialer Druckbeanspruchung. Bisher wurden ein Feinkornbeton und zwei Grobkornbetone mit unterschiedlichen Faserzusätzen untersucht. Die Zylinderdruckfestigkeiten nach 28 Tagen betragen rund 150, 160 und 170 N/mm². Besonders bei dem Feinkornbeton wurde eine überwiegend horizontale Ausrichtung der Stahlfasern festgestellt, die zu einer Anisotropie im Materialverhalten führte. Zusammenfassend muss festgestellt werden, dass die zweiaxiale Druckfestigkeit von UHPC nur geringfügig größer ist als die einaxiale. Für die Mischungen mit 2,5 Vol.-% Fasergehalt übersteigt die Festigkeit bei einem Spannungsverhältnis von Spannung 1 zu Spannung 2 gleich Eins die einaxiale Festigkeit um 7 bzw. 10 %. Bei dem Beton mit 0,9 Vol.-% Fasergehalt lag diese zweiaxiale Festigkeit sogar geringfügig unter der einaxialen. Bei der Bemessung von UHPC dürfen somit die vom Normalbeton bekannten Festigkeitssteigerungen unter mehraxialer Druckbelastung, wie sie z.B. bei reinen Druckknoten von Stabwerkmodellen angesetzt werden, nicht verwendet werden! Für die Beschreibung der Bruchkurve kann nach jetzigem Erkenntnisstand das Bruchkriterium nach OTTOSEN als eine gute Näherung empfohlen werden. Die Versuche haben gezeigt, dass sich UHPC in vielen, zum Teil sicherheitsrelevanten Bereichen anders verhält als Normalbeton. Für eine umfassende Beschreibung des Tragverhaltens sind weitere Versuche unter dreiaxiale Druckbelastung und kombinierter Druck-Zug-Belastung notwendig.
8

Non-Waste-Wachsschalungen: Neuartige Präzisions-Schalungen aus 100 % recycelbaren Industrie-Wachsen zur Herstellung von geometrisch komplexen Beton-Bauteilen

Baron, Sarah, Mainka, Jeldrik, Hoffmeister, Hans Werner, Dröder, Klaus, Kloft, Harald 21 July 2022 (has links)
Die neuen 3D-Entwurfs-, Berechnungs- und Fertigungsverfahren in Kombination mit dem Werkstoff ultrahochfester Beton (UHPC) bieten das Potenzial, den Beton-Leichtbau zu revolutionieren [1]. Die Herausforderung bei der Herstellung von geometrisch komplexen und hochpräzisen UHPC-Bauteilen liegt dabei im Schalungsbau. Da bisher keine verfügbaren abfallfreien und somit nachhaltigen alternativen Schalungsmaterialien bzw. -systeme identifiziert werden konnten, wurde der Forschungsansatz entwickelt, frei geformte Schalungen für Betonbauteile unter Verwendung von CNC-gefrästen recycelbaren Industriewachsen zu verwenden. Die Erforschung dieses Ansatzes hin zu einer anwendbaren Non-Waste-Schalungstechnologie wurde in einem gemeinsamen Forschungsprojekt des Instituts für Werkzeugmaschinen und Fertigungstechnik (IWF) und des Instituts für Tragwerksentwurf (ITE) der TU Braunschweig durchgeführt. Im Folgenden werden die wesentlichen Inhalte des Vorhabens, ausgehend von der Auswahl geeigneter Wachse, über die Untersuchung der Zerspanbarkeit bis hin zur Betonierung und anschließenden Analyse der Schalungen und Abgüsse, vorgestellt und diskutiert. Grundlegende Erkenntnisse wurden u. a. bereits 2016 in [2]–[5] veröffentlicht. Diese werden hier teilweise wiedergegeben und zudem mit zusätzlichen Informationen ergänzt. Die wesentlichen Erkenntnisse aus dem Forschungsvorhaben werden zusammengefasst. Ausführliche Informationen zur Entwicklung der Non-Waste-Wachsschalungstechnologie finden sich in der 2019 veröffentlichten Dissertation von Jeldrik Mainka [6]. / The new 3D design, calculation and manufacturing methods in combination with ultra-high strength concrete (UHPC) off er the potential to revolutionise lightweight concrete construction [1]. The challenge in the production of geometrically complex and high-precision UHPC components lies in formwork construction. As no available waste-free and thus sustainable alternative formwork materials or systems have been identified so far, the research approach was developed to use freely shaped formwork for concrete components using CNC-milled recyclable industrial waxes. The research of this approach towards an applicable non-waste formwork technology was carried out in a joint research project of the Institute for Machine Tools and Production Engineering (IWF) and the Institute of Structural Design (ITE) of the Technical University of Braunschweig. In the following, the main contents of the project, starting with the selection of suitable waxes, the investigation of machinability up to the concreting and subsequent analysis of the formwork and castings are presented and discussed. Basic findings have already been published in 2016 in [2]–[5]. These are partly reproduced here and supplemented with additional information. The main findings of the research project are summarised. Detailed information on the development of non-waste wax formwork technology can be found in the dissertation by Jeldrik Mainka [6], published in 2019.
9

Schriftenreihe des Institutes für Baustoffe

24 April 2018 (has links)
Bei den Forschungsaktivitäten wird von aktuellen Fragestellungen der Baustofftechnologie ausgegangen, wobei die Lösung akuter Probleme der Baupraxis und die Schaffung von soliden theoretischen Grundlagen in gleichem Maße angestrebt werden. Die Forschung wird hierbei vor allem durch interdisziplinäres Arbeiten geprägt. Zu den aktuellen Forschungsschwerpunkten zählen insbesondere: Entwicklung neuer zementbasierter Verbundwerkstoffe sowie von Verfahren zu deren Herstellung mit besonderem Akzent auf Faserbetone (Hochduktiler Beton mit Kurzfasern, Beton mit textiler Bewehrung, Ultrahochfester Beton mit innerer Nachbehandlung, Selbstverdichtender Leichtbeton, Beton mit sehr hohem Verschleißwiderstand) Untersuchung der Kurz- und Langzeiteigenschaften von neuen und bestehenden Baustoffen auf mineralischer Basis (Beton, Mörtel, Mauerwerk); Erforschung der für das Materialverhalten maßgebenden Mechanismen sowie der Mittel zu deren gezielten Beeinflussung (Festigkeits-, Verformungs- und Bruchverhalten unter monotoner, zyklischer und stoßartiger Beanspruchung sowie Schwinden und Kriechen von Beton; Transport von korrosiven Medien unter Berücksichtigung der Rissbildung, Schädigungsmechanismen und Dauerhaftigkeit) Modellierung des Baustoffverhaltens; Ableitung von stoffgesetzlichen Beziehungen; numerische Simulation des Materialverhaltens in unterschiedlichen Stadien seines "Lebens" (Herstellung, Verarbeitung, Erhärtung, mechanische Beanspruchung, Exposition von korrosiven Medien etc.)
10

Untersuchungen zum Einfluss der elektrischen Felder auf das Design von Kompakthöchstspannungsmasten aus ultrahochfestem Beton (UHPC) und zur Identifizierung der elektrischen und thermischen Parameter des UHPCs

Bakka, Maher 11 October 2018 (has links)
Freileitungsmaste aus herkömmlichen Beton werden bereits heute in großer Zahl in Mittelspan-nungsnetzen eingesetzt. Im Bereich der Hochspannungsfreileitungen existieren bisher international nur wenige erste Freileitungen mit Masten aus herkömmlichen Beton. Um zukünftig Elektroenergie über große Entfernungen über Trassen mit geringen Flächenbedarf transportieren zu können, sind neue Hochspannungsfreileitungen in kompakter Bauweise notwendig. Um dieses Ziel zu erfüllen, sollen die Kompaktmaste aus ultra-hochfestem Beton (UHPC) hergestellt werden. Dafür ist eine neue Sorte von UHPC mit hoher Festigkeitsklasse zu entwickeln. Die mechanischen, elektrischen und thermischen Eigenschaften des neuen Betonmaterials waren zunächst unbekannt. Bisher gab es kaum Kenntnisse über die elektrischen und thermischen Belas-tungen, die auf die Betonmaste einer Freileitung in kompakter Bauweise einwirken. Ein Teilthema im interdisziplinären Forschungsprojekt „KoHöMaT“ (gefördert durch das Bundesmi-nisterium für Wirtschaft und Energie) war es, gemeinsam mit Forschungsinstituten (IMB, Fichtner, Lapp, Europoles, KIT, iBMB) die Materialparameter des neuen UHPC zu bestimmen. Den Einfluss der elektromagnetischen Belastungen auf die Lebensdauer und die Festigkeit des Ver-bundes aus Stahl und Beton habe ich untersucht. Aufgabe meiner Arbeit ist es auch, die elektrischen und thermischen Eigenschaften, wie die elektrische Leitfähigkeit, die elektrische Festigkeit, die Per-mittivität, den Verlustfaktor und die Wärmeleitfähigkeit experimentell zu bestimmen. Anhand der experimentellen Untersuchungen wurde der Versagensmechanismus des UHPC-Betons bei Span-nungsbelastung identifiziert. Die am Betonmast auftretenden elektrischen und thermischen Belas-tungen wurden mit Hilfe von verschiedenen FEM-Modellen berechnet und den gemessenen Fes-tigkeiten gegenübergestellt. Es wurde der Einfluss permanenter elektrischer Felder auf die mechanischen Eigenschaften des UHPC bestimmt. Hierfür wurde die Druckfestigkeit des Betons vor und nach Dauerversuchen bei verschiedenen Spannungsbelastung gemessen. Der Verbund zwischen Stahl und Beton wurde in Lastwechselversuchen thermisch hoch beansprucht und dessen mechanische Festigkeit vor und nach der thermischen Belastung bei Auszugsversuchen gemessen. Aufgrund der befürchtenden gesundheitlichen Risiken für Menschen und Tiere, sowie der gegen-seitigen Beeinflussung benachbarter elektronischer Systeme (EMV) dürfen die elektromagnetischen Felder von Freileitungen die jeweiligen maximal zulässigen Grenzwerte nicht überschreiten. Ich habe die Berechnungen der elektrischen und magnetischen Feldverteilung für die im Verbundvorhaben entwickelten Mastdesigns durchgeführt. Gemeinsam mit den Forschungsinstituten (Europoles, Fichtner, Lapp) wurden die Mastdesigns hinsichtlich der Feldverteilung optimiert. / The Overhead line towers made of conventional concrete are already used in large numbers in the medium voltage nowadays. So far, only a few towers of overhead transmission line made of con-ventional concrete which exists internationally in the area of high voltage. In order to be able to transmit electrical energy over long distances by routes of less floor space requirements, new high voltage overhead lines in compact construction are necessary. To achieve this goal, the compact towers have to be made of ultra-high-performance concrete (UHPC). Therefore, a new kind of UHPC with a high strength class has to be developed. For this kind of new concrete, the mechanical, electrical and thermal characteristics were unknown till now either, there was rare knowledge about the electric and thermal loads which have an effect on the concrete towers of an overhead line in compact construction method. The main purpose part of this interdisciplinary research project 'KoHöMaT “, which funded by the Federal Ministry for Economic Affairs and Energy), was to identify the material parameters of the new UHPC together with the following research institutes (IMB, Fichtner, Lapp, Europoles, KIT, iBMB). It was examined the influence of electromagnetic loads on the lifetime and its’ strength bond be-tween both of composite steel and concrete, also as my major involve was to determine the elec-trical and thermal properties experimentally, such as electrical conductivity, electrical strength, per-mittivity, dissipation factor and finally thermal conductivity. As a result, the failure mechanism of the UHPC under the electrical stresses has been identified then,the electrical and thermal loads on the concrete towers were calculated by using various FEM models accordingly, the measured values were used in the determination of electrical strength. All mentioned theoretical calculated parameters were compared with the real measured parameters. The influence of permanent electric fields on mechanical properties of the UHPC was determined as well. Mainly, the compressive strength of the concrete was measured before and after durability tests at different voltage loads. In addition, the composite (interface) between steel and concrete was thermal extremely loaded by alternating load tests. Its mechanical strength has been measured by pull-out tests before and after this thermal loads. Due to the fear of health risks for both humans and animals, as well as the mutual influence of neighboring electronic systems (EMV), the electromagnetic fields of open lines must not exceed the respective maximum permissible limit values. The calculations of the electrical and magnetic field distribution were carried out for the mast design developed in the composite project. Together with the other research institute (Europoles, Fichtner, Lapp). the tower designs were optimized with re-gard to the field distribution.

Page generated in 0.092 seconds