Spelling suggestions: "subject:"ultrasound doppler velocimetry"" "subject:"ultrasound koppler velocimetry""
1 |
Experimental Investagation Of Drag Reduction Effects Of Polymer Additives On Turbulent Pipe FlowZeybek, Serife 01 August 2005 (has links) (PDF)
Since the discovery of the drag reduction effects of even small amount of macromolecules in solutions in turbulent pipe flows, there have been many experimental and theoretical studies in order to understand mechanisms behind this phenomenon. Theories have been proposed based on the observations on the change in the characteristics of the turbulent flow near the pipe wall where friction of the momentum transfer between the flow and the conduit takes place.
In this study drag reduction in fully developed turbulent pipe flow with four concentrations (200 to 500 wppm) of low molecular weight Sodium Carboxymethylcellulose (CMC) in aqueous solutions was investigated experimentally. Drag reduction was determined by pressure drop measurements. In order to observe the impact of the presence of CMC on the flow, Ultrasound Doppler Velocimetry (UDV) was employed to monitor the instantaneous velocity distributions. UDV is a non-invasive technique allowing one to obtain quick velocity profiles. Experimental measurements were used to calculate Fanning friction factor and radial distributions of the axial time-averaged velocity, velocity fluctuation (turbulent intensity) and eddy viscosity.
The drag reduction level was determined through the Fanning friction factor versus Reynolds number data. Velocity data could be obtained as close as 3 mm to the wall by UDV.
Two impacts of increasing CMC concentration on the flow field, hence pressure drop, were observed. The first effect was the decrease of the mean velocity gradient especially near the wall with increasing polymer amount which in turn gave rise to lower friction factor or pressure drop. In addition smaller eddy viscosities were obtained in the flow. The second impact of the polymer addition was on the velocity fluctuation or turbulent intensity variation along the radial distribution. An increasing trend in turbulence intensity in the turbulent core with polymer addition was observed. This was in agreement with the earlier studies in which similar turbulence behavior was observed in addition to the suppression of the turbulent intensities near the wall
|
2 |
Pulsed ultrasonic doppler velocimetry for measurement of velocity profiles in small channels and capplilariesMesser, Matthias 07 September 2005 (has links)
Pulsed ultrasound Doppler velocimetry proved to be capable of measuring velocities accurately (relative error less than 0.5 percent). In this research, the limitations of the method are investigated when measuring:
in channels with a small thickness compared to the transducer diameter,
at low velocities
and in the presence of a flow reversal area.
A review of the fundamentals of pulsed ultrasound Doppler velocimetry reveals that the accuracy of the measured velocity field mainly depends on the shape of the acoustic beam through the flow field and the intensity of the echo from the incident particles where the velocity is being measured. The ultrasonic transducer turned out to be most critical component of the system. Fundamental limitations of the method are identified.
With ultrasonic beam measurements, the beam shape and echo intensity is further investigated. In general, the shape of the ultrasonic beam varies depending on the frequency and diameter of the emitter as well as the characteristics of the acoustic interface that the beam encounters. Moreover, the most promising transducer to measure velocity profiles in small channels is identified. Since the application of pulsed ultrasound Doppler velocimetry often involves the propagation of the ultrasonic burst through Plexiglas, the effect of Plexiglas walls on the measured velocity profile is analyzed and quantified in detail. The transducers ringing effect and the saturation region caused by highly absorbing acoustic interfaces are identified as limitations of the method.
By comparing measurement results in the small rectangular channel to numerically calculated results, further limitations of the method are identified. It was not possible to determine velocities correctly throughout the whole channel at low flow rates, in small geometries and in the flow separation region. A discrepancy between the maximum measured velocity, velocity profile perturbations and incorrect velocity determination at the far channel wall were main shortcomings. Measurement results are improved by changes in the Doppler angle, the flow rate and the particle concentration.
Suggestions to enhance the measurement system, especially its spatial resolution, and to further investigate acoustic wave interactions are made.
|
3 |
Experimental Investigation Of The Agitation Of Complex FluidsYazicioglu, Ozge 01 July 2006 (has links) (PDF)
In this study, agitation of solutions using different impeller and tank geometry were investigated experimentally in terms of hydrodynamics, macromixing time and aeration characteristics. In the first set of experiments a cylindrical vessel equipped with two types of hydrofoil and a hyperboloid impeller or their combinations were used. Vessel and impeller diameters and water level were 300, 100 and 300 mm, respectively. At the same specific power consumption, 163 W/m3, the so called hydrofoil 1 impeller provided the shortest mixing time at 7.8 s. At the top hydrofoil 1 impeller submergence of 100 mm, the hyperboloid impeller combination of it was the most efficient by a mixing time of 10.0 s at 163 W/m3. Ultrasound Doppler velocimetry and the lightsheet experiments showed that the hydrofoil 1, hydrofoil 2 impellers and the stated impeller combination provided a complete circulation all over the tank.
Macromixing measurements were performed in square vessel for Generation 5 low and high rib and Generation 6 hyperboloid impellers. Vessel length, impeller diameters and water level were 900, 300 and 450 mm, respectively. At the same specific power consumption, 88.4 W/m3, Generation 6 mixer provided the lowest mixing time at 80.5 s.
Aeration experiments were performed in square tank for Generation 5 low rib and Generation 6 hyperboloid impellers equipped with additional blades. With increasing flow number, the differences between the performances at different rotational speeds became smaller for each type of mixer. At similar conditions the transferred oxygen amount of Generation 6 impeller was about 20% better.
|
4 |
Untersuchung bildgebender Ultraschallmesstechnik für instationäre Strömungsvorgänge in der MagnetohydrodynamikNauber, Richard 16 April 2019 (has links)
Bei einer Reihe bedeutsamer industrieller Prozesse, wie dem Stahl-Strangguss oder der Kristallzucht für die Photovoltaik, ist die Strömung flüssiger Metalle oder Halbleiter entscheidend für den Energieaufwand bei der Herstellung und die Qualität des Endproduktes. Eine gezielte, berührungslose Einwirkung von Lorentzkräften auf die heißen Schmelzen kann dabei die Ressourceneffizienz eines Prozesses signifikant steigern. Die komplexe Interaktion von elektrisch leitfähigen Fluiden und magnetischen Wechselfeldern wird dazu in der Magnetohydrodynamik (MHD) durch Experimente im Labormaßstab an niedrigschmelzenden Metallen untersucht. Die dabei auftretenden instationären, dreidimensionalen Strömungsfelder erfordern eine nicht-invasive, bildgebende Strömungsmesstechnik für opake Fluide mit hoher Orts- und Zeitauflösung,
welche derzeitig nicht für die MHD zur Verfügung steht.
Im Rahmen dieser Arbeit soll mit den Mitteln der Elektrotechnik eine für MHD-Modellexperimente geeignete Messtechnik basierend auf dem Ultraschall-Doppler-Prinzip geschaffen werden. Dabei wird der Ansatz verfolgt, die Komplexität eines Messsystems vom mechanischen Aufbau hin zur Rechentechnik zu verlagern, um durch die dort in jüngster Zeit verfügbaren Ressourcen neuartige Signalverarbeitungsmethoden und eine höhere Flexibilität zu ermöglichen. Mit dem Ultrasound Array Doppler Velocimeter (UADV) wurde ein flexibles Messsystem für MHD-Modellexperimente geschaffen, welches eine mehrkomponentige Mehrebenenmessung durch Sensordatenfusion von bis zu neun linearen Wandlerarrays im kombinierten Zeit- und Ortsmultiplex erreicht.
Die Signalverarbeitung ist durch eine auf einem Field Programmable Gate Array implementierte Datenkompression onlinefähig. Sie reicht trotz geringer rechentechnischer Komplexität bis auf Faktor 3 an die fundamentale Grenze der Messunsicherheit, die Cramér-Rao-Schranke, heran. Das UADV wurde über ein Kalibrierexperiment mit interferometrischer Referenzmessung auf die SI-Einheiten zurückgeführt.
Das UADV wurde an einer magnetfeldgetriebenen Strömung in einem kubischen Gefäß angewandt. Numerische Simulationen sagen dort nicht-deterministisch einsetzende Instabilitäten im Übergangsbereich des laminaren zum turbulenten Strömungsregimes vorher. Durch eine simultane Zweiebenenmessung mit hoher örtlicher (3 ... 5 mm) und zeitlicher Auflösung (Bildrate 11,2 Hz) bei gleichzeitig langer Aufnahmedauer (> 1000 s) konnten die Instabilitäten erstmals experimentell charakterisiert werden. Eine Hauptkomponentenanalyse identifizierte ein gekoppeltes Paar von Strömungsmoden, welche eine spontan anfachende harmonische Oszillation mit der Frequenz f = 0,072 Hz
beschreiben und durch komplexe Wirbel gekennzeichnet sind. Die Analyse der Messunsicherheit für das gegebene Experiment ergab, dass diese mit σ v,rel = 13,9 % hauptsächlich durch das räumliche Auflösungsvermögen bestimmt wird.
Das Schallfeld ist bei ultraschallbasierten Messverfahren ausschlaggebend für die Eigenschaften der Bildgebung. Mit dem Phased Array Doppler Velocimeter (PAUDV) wurde ein modulares Messsystem mit adaptiven Schallfeld aufgebaut, wobei durch digitale Strahlformung die örtliche und zeitliche Auflösung signifikant erhöht werden kann. Eine aktive Kontrolle des Schallfeldes ermöglicht zudem die Messung durch Objekte mit komplexen, unbekannten Ausbreitungseigenschaften. Mit dem Time Reversal Virtual Array (TRVA) wird dabei eine effiziente Methode zur Bildgebung vorgestellt und auf die Strömungsmessung durch einen Multimode-Wellenleiter angewandt. Damit kann die Beschränkung bildgebender Ultraschallmesstechnik hinsichtlich der Betriebstemperatur der Wandler umgangen und heiße Schmelzen industrieller und technischer Prozesse für nichtinvasive In-Prozess-Bildgebung zugänglich gemacht werden. / In many important industrial processes, such as continuous steel casting or crystal
growth for photovoltaic silicon, the flow of liquid metals or semiconductors determines the energy consumption of the process and the quality of the product. Influencing the hot melts contactlessly through Lorentz forces for a targeted flow control can significantly improve the resource-efficiency of a process. The complex interaction of electrically conductive fluids and alternating magnetic fields is investigated in the field of magnetohydrodynamics (MHD) through laboratory-scale experiments in low melting metals. The emerging instationary, three-dimensional flows require a temporally and spatially high-resolved non-invasive flow imaging system, which currently is not available for MHD research.
In this work, a flow instrumentation for MHD experiments based on the ultrasound Doppler principle is created through means of electrical engineering. The general
approach is to shift the complexity of a system from mechanics over electronics to an algorithmic implementation in order to exploit the recent computational advances, enabling novel signal processing methods and increasing the flexibility.
The ultrasound array Doppler velocimeter (UADV) has been created as a flexible instrumentation system for MHD experiments. It supports multicomponent, multiplane velocity measurements through sensor fusion of up to nine linear transducer arrays with spatiotemporal multiplexing. An online signal processing is realized through data compression on a field-programmable gate array (FPGA). It achieves an uncertainty as low as a factor 3 of the Cramér-Rao lower bound despite a low computational complexity of the algorithm.
The UADV has been applied to a magnetically-driven flow in a cubic vessel. Numerical simulations predicted a non-deterministic instability in the transitory region between laminar and turbulent flow regimes. A simultaneous two-dimensional two-component flow measurement with high spatial (3 ... 5 mm) and temporal resolution (frame rate 11,2 Hz) over long durations (> 1000 s) allowed to characterize those instabilities experimentally for the first time. A principal component analysis identified a pair of coupled modes with a complex vortex structure that performs a spontaneously onsetting oscillation at f = 0,072 Hz. The measurement uncertainty for the experiment has been evaluated to be σ v,rel = 13,9 % and is primarily caused by the spatial resolution of the system.
The properties of ultrasound-based imaging are primarily determined by the sound field. The phased array Doppler velocimeter (PAUDV) has been developed as a modular flow instrumentation system with an adaptive sound field, which allows to increase the spatial and temporal resolution. Furthermore, an active control of the sound field enables measurements despite a complex, unknown sound propagation. A method to image through strong aberrations efficiently has been proposed with the time reversal virtual array (TRVA). It has been applied to flow imaging through a multimode waveguide, thus allowing to circumvent the limitation of common ultrasound imaging systems regarding their maximum operating temperature. This paves the way for in-process flow imaging of hot, opaque liquids in technical and industrial processes.
|
5 |
Liquid metal flows drive by gas bubbles in a static magnetic fieldZhang, Chaojie 02 February 2010 (has links) (PDF)
This thesis presents an experimental study which investigates the behaviour of gas bubbles rising in a liquid metal and the related bubble-driven flow under the influence of external DC magnetic fields. The experimental configuration considered here concerns a cylindrical container filled with the eutectic alloy GaInSn. Argon gas bubbles are injected through a single orifice located at the container bottom in the centre of the circular cross-section. A homogeneous magnetic field was generated by a Helmholtz configuration of a pair of water-cooled copper coils. The magnetic field has been imposed either in vertical direction parallel to the main bubble motion or in horizontal direction, respectively. A vertical magnetic field stabilizes and damps the liquid metal flow effectively. The temporal variations of the fluid velocity with time become smaller with increasing magnetic induction. The velocity magnitudes are decreased, and the velocity distributions along the magnetic field lines are smoothed. The flow field keeps the axisymmetric distribution. A horizontal magnetic field destabilizes and enhances the flow within a range of moderate Hartmann numbers (100 < Ha < 400). The flow becomes non-axisymmetric due to the non-isotropic influence of the magnetic field. In the meridional plane parallel to the field lines, the flow changes its direction from a downward to an upward motion. Enhanced downward flows were observed in the meridional plane perpendicular to the field lines. The liquid velocity in both planes shows strong, periodic oscillations. The fluid motion is dominated by large-scale structures elongated along the magnetic field lines over the entire chord lengths of the circular cross-section.
|
6 |
Liquid metal flows drive by gas bubbles in a static magnetic fieldZhang, Chaojie 18 January 2010 (has links)
This thesis presents an experimental study which investigates the behaviour of gas bubbles rising in a liquid metal and the related bubble-driven flow under the influence of external DC magnetic fields. The experimental configuration considered here concerns a cylindrical container filled with the eutectic alloy GaInSn. Argon gas bubbles are injected through a single orifice located at the container bottom in the centre of the circular cross-section. A homogeneous magnetic field was generated by a Helmholtz configuration of a pair of water-cooled copper coils. The magnetic field has been imposed either in vertical direction parallel to the main bubble motion or in horizontal direction, respectively. A vertical magnetic field stabilizes and damps the liquid metal flow effectively. The temporal variations of the fluid velocity with time become smaller with increasing magnetic induction. The velocity magnitudes are decreased, and the velocity distributions along the magnetic field lines are smoothed. The flow field keeps the axisymmetric distribution. A horizontal magnetic field destabilizes and enhances the flow within a range of moderate Hartmann numbers (100 < Ha < 400). The flow becomes non-axisymmetric due to the non-isotropic influence of the magnetic field. In the meridional plane parallel to the field lines, the flow changes its direction from a downward to an upward motion. Enhanced downward flows were observed in the meridional plane perpendicular to the field lines. The liquid velocity in both planes shows strong, periodic oscillations. The fluid motion is dominated by large-scale structures elongated along the magnetic field lines over the entire chord lengths of the circular cross-section.
|
Page generated in 0.0666 seconds