Spelling suggestions: "subject:"flüssigmetallströmung"" "subject:"flüssigmetallströmungen""
1 |
Liquid metal flows drive by gas bubbles in a static magnetic fieldZhang, Chaojie 02 February 2010 (has links) (PDF)
This thesis presents an experimental study which investigates the behaviour of gas bubbles rising in a liquid metal and the related bubble-driven flow under the influence of external DC magnetic fields. The experimental configuration considered here concerns a cylindrical container filled with the eutectic alloy GaInSn. Argon gas bubbles are injected through a single orifice located at the container bottom in the centre of the circular cross-section. A homogeneous magnetic field was generated by a Helmholtz configuration of a pair of water-cooled copper coils. The magnetic field has been imposed either in vertical direction parallel to the main bubble motion or in horizontal direction, respectively. A vertical magnetic field stabilizes and damps the liquid metal flow effectively. The temporal variations of the fluid velocity with time become smaller with increasing magnetic induction. The velocity magnitudes are decreased, and the velocity distributions along the magnetic field lines are smoothed. The flow field keeps the axisymmetric distribution. A horizontal magnetic field destabilizes and enhances the flow within a range of moderate Hartmann numbers (100 < Ha < 400). The flow becomes non-axisymmetric due to the non-isotropic influence of the magnetic field. In the meridional plane parallel to the field lines, the flow changes its direction from a downward to an upward motion. Enhanced downward flows were observed in the meridional plane perpendicular to the field lines. The liquid velocity in both planes shows strong, periodic oscillations. The fluid motion is dominated by large-scale structures elongated along the magnetic field lines over the entire chord lengths of the circular cross-section.
|
2 |
Liquid metal flows drive by gas bubbles in a static magnetic fieldZhang, Chaojie 18 January 2010 (has links)
This thesis presents an experimental study which investigates the behaviour of gas bubbles rising in a liquid metal and the related bubble-driven flow under the influence of external DC magnetic fields. The experimental configuration considered here concerns a cylindrical container filled with the eutectic alloy GaInSn. Argon gas bubbles are injected through a single orifice located at the container bottom in the centre of the circular cross-section. A homogeneous magnetic field was generated by a Helmholtz configuration of a pair of water-cooled copper coils. The magnetic field has been imposed either in vertical direction parallel to the main bubble motion or in horizontal direction, respectively. A vertical magnetic field stabilizes and damps the liquid metal flow effectively. The temporal variations of the fluid velocity with time become smaller with increasing magnetic induction. The velocity magnitudes are decreased, and the velocity distributions along the magnetic field lines are smoothed. The flow field keeps the axisymmetric distribution. A horizontal magnetic field destabilizes and enhances the flow within a range of moderate Hartmann numbers (100 < Ha < 400). The flow becomes non-axisymmetric due to the non-isotropic influence of the magnetic field. In the meridional plane parallel to the field lines, the flow changes its direction from a downward to an upward motion. Enhanced downward flows were observed in the meridional plane perpendicular to the field lines. The liquid velocity in both planes shows strong, periodic oscillations. The fluid motion is dominated by large-scale structures elongated along the magnetic field lines over the entire chord lengths of the circular cross-section.
|
3 |
Numerische Untersuchung der Rayleigh-Bénard-Konvektion in einem Flüssigmetall unter dem Einfluss einer zeitlich modulierten gezeitenartigen KraftRöhrborn, Sebastian 01 September 2023 (has links)
In der vorliegenden Arbeit konnte gezeigt werden, dass die numerischen simulationen einer freien Rayleigh-Bénard-Konvektion und einer rein elektromagnetisch angetriebenen gezeiten-artigen Strömung in einem stehenden zylindrischen Volumen mit einem Seitenverhältnis Г = D/H = 1 und seitlich angelegten Magnetspulen eine gute Übereinstimmung mit entspre-chenden Experimenten aufweisen. Kombiniert man beide Mechanismen und moduliert die Lorentzkraft, so zeigen sich in den Frequenzspektren der Helizität in zwei Halbräumen des Volumens deutliche Maxima an der Modulationsfrequenz. Eine solche Helizitätssynchronisierung durch Gezeitenkräfte wird derzeit als mögliche Erklärung für die hohe Regularität des Sonnendynamos diskutiert. Des Weiteren wird die in freier Konvektion auftretende langsame azimutale Wanderung der Konvektionszelle unterdrückt. Der Schwingungswinkel der azimutalen Schwappbewegung nimmt dabei ab und die in der Strömung dominante Frequenz erhöht sich. Die durch die zwei unterschiedlichen Antriebsmechanismen erzeugten Strömungsstrukturen bleiben in der Strömung eigenständig erhalten und treten in gegenseitige Interaktion.:1. Einleitung
2. Grundlagen
2.1. Rayleigh-Bénard-Konvektion
2.2. MHD - Magnetohydrodynamik
2.3. Wichtige Aspekte des numerischen Modells
3. Modellerstellung
3.1. Geometrie
3.2. Numerisches Modell
3.2.1. Elektromagnetisches Modell in Opera
3.2.2. Modell der Strömungsberechnung in OpenFOAM
4. Ergebnisse
4.1. Ergebnisse der freien Rayleigh-Bénard-Konvektion
4.2. Ergebnisse der nichtmodulierten elektromagnetischen Strömungsanregung ohne Temperaturgradient
4.3. Ergebnisse der zeitmodulierten elektromagnetischen Strömungsanregung ohne Temperaturgradient
4.4. Ergebnisse der elektromagnetisch beeinflussten Rayleigh-Bénard-Konvektion
4.4.1. Auswirkung der elektromagnetischen Beeinflussung auf die Strömungsstruktur
4.4.2. Vergleich ausgewählter Ergebnisse der numerischen Untersuchung und des Experimentes
4.4.3. Auswirkung der elektromagnetischen Beeinflussung auf die Helizität
5. Zusammenfassung und Fazit
|
Page generated in 0.3205 seconds