• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Uncertainty intervals and sensitivity analysis for missing data

Genbäck, Minna January 2016 (has links)
In this thesis we develop methods for dealing with missing data in a univariate response variable when estimating regression parameters. Missing outcome data is a problem in a number of applications, one of which is follow-up studies. In follow-up studies data is collected at two (or more) occasions, and it is common that only some of the initial participants return at the second occasion. This is the case in Paper II, where we investigate predictors of decline in self reported health in older populations in Sweden, the Netherlands and Italy. In that study, around 50% of the study participants drop out. It is common that researchers rely on the assumption that the missingness is independent of the outcome given some observed covariates. This assumption is called data missing at random (MAR) or ignorable missingness mechanism. However, MAR cannot be tested from the data, and if it does not hold, the estimators based on this assumption are biased. In the study of Paper II, we suspect that some of the individuals drop out due to bad health. If this is the case the data is not MAR. One alternative to MAR, which we pursue, is to incorporate the uncertainty due to missing data into interval estimates instead of point estimates and uncertainty intervals instead of confidence intervals. An uncertainty interval is the analog of a confidence interval but wider due to a relaxation of assumptions on the missing data. These intervals can be used to visualize the consequences deviations from MAR have on the conclusions of the study. That is, they can be used to perform a sensitivity analysis of MAR. The thesis covers different types of linear regression. In Paper I and III we have a continuous outcome, in Paper II a binary outcome, and in Paper IV we allow for mixed effects with a continuous outcome. In Paper III we estimate the effect of a treatment, which can be seen as an example of missing outcome data.
2

Extraction des utilisations typiques à partir de données hétérogènes en vue d'optimiser la maintenance d'une flotte de véhicules / Critical usages extraction from historical and heterogénius data in order to optimize fleet maintenance

Ben Zakour, Asma 06 July 2012 (has links)
Le travail produit s'inscrit dans un cadre industriel piloté par la société 2MoRO Solutions. La réalisation présentée dans cette thèse doit servir à l'élaboration d'un service à haute valeur, permettant aux exploitants aéronautiques d'optimiser leurs actions de maintenance. Les résultats obtenus permettent d'intégrer et de regrouper les tâches de maintenance en vue de minimiser la durée d'immobilisation des aéronefs et d'en réduire les risques de panne.La méthode que nous proposons comporte trois étapes : (i) une étape de rationalisation des séquences afin de pouvoir les combiner [...] / The present work is part of an industrial project driven by 2MoRO Solutions company.It aims to develop a high value service enabling aircraft operators to optimize their maintenance actions.Given the large amount of data available around aircraft exploitation, we aim to analyse the historical events recorded with each aircraft in order to extract maintenance forecasting. Theresults are used to integrate and consolidate maintenance tasks in order to minimize aircraft downtime and risk of failure. The proposed method involves three steps : (i) streamlining information in order to combinethem, (ii) organizing this data for easy analysis and (iii) an extraction step of useful knowledgein the form of interesting sequences. [...]
3

Análise de dados categorizados com omissão em variáveis explicativas e respostas / Categorical data analysis with missingness in explanatory and response variables

Poleto, Frederico Zanqueta 08 April 2011 (has links)
Nesta tese apresentam-se desenvolvimentos metodológicos para analisar dados com omissão e também estudos delineados para compreender os resultados de tais análises. Escrutinam-se análises de sensibilidade bayesiana e clássica para dados com respostas categorizadas sujeitas a omissão. Mostra-se que as componentes subjetivas de cada abordagem podem influenciar os resultados de maneira não-trivial, independentemente do tamanho da amostra, e que, portanto, as conclusões devem ser cuidadosamente avaliadas. Especificamente, demonstra-se que distribuições \\apriori\\ comumente consideradas como não-informativas ou levemente informativas podem, na verdade, ser bastante informativas para parâmetros inidentificáveis, e que a escolha do modelo sobreparametrizado também tem um papel importante. Quando há omissão em variáveis explicativas, também é necessário propor um modelo marginal para as covariáveis mesmo se houver interesse apenas no modelo condicional. A especificação incorreta do modelo para as covariáveis ou do modelo para o mecanismo de omissão leva a inferências enviesadas para o modelo de interesse. Trabalhos anteriormente publicados têm-se dividido em duas vertentes: ou utilizam distribuições semiparamétricas/não-paramétricas, flexíveis para as covariáveis, e identificam o modelo com a suposição de um mecanismo de omissão não-informativa, ou empregam distribuições paramétricas para as covariáveis e permitem um mecanismo mais geral, de omissão informativa. Neste trabalho analisam-se respostas binárias, combinando um mecanismo de omissão informativa com um modelo não-paramétrico para as covariáveis contínuas, por meio de uma mistura induzida pela distribuição \\apriori\\ de processo de Dirichlet. No caso em que o interesse recai apenas em momentos da distribuição das respostas, propõe-se uma nova análise de sensibilidade sob o enfoque clássico para respostas incompletas que evita suposições distribucionais e utiliza parâmetros de sensibilidade de fácil interpretação. O procedimento tem, em particular, grande apelo na análise de dados contínuos, campo que tradicionalmente emprega suposições de normalidade e/ou utiliza parâmetros de sensibilidade de difícil interpretação. Todas as análises são ilustradas com conjuntos de dados reais. / We present methodological developments to conduct analyses with missing data and also studies designed to understand the results of such analyses. We examine Bayesian and classical sensitivity analyses for data with missing categorical responses and show that the subjective components of each approach can influence results in non-trivial ways, irrespectively of the sample size, concluding that they need to be carefully evaluated. Specifically, we show that prior distributions commonly regarded as slightly informative or non-informative may actually be too informative for non-identifiable parameters, and that the choice of over-parameterized models may drastically impact the results. When there is missingness in explanatory variables, we also need to consider a marginal model for the covariates even if the interest lies only on the conditional model. An incorrect specification of either the model for the covariates or of the model for the missingness mechanism leads to biased inferences for the parameters of interest. Previously published works are commonly divided into two streams: either they use semi-/non-parametric flexible distributions for the covariates and identify the model via a non-informative missingness mechanism, or they employ parametric distributions for the covariates and allow a more general informative missingness mechanism. We consider the analysis of binary responses, combining an informative missingness model with a non-parametric model for the continuous covariates via a Dirichlet process mixture. When the interest lies only in moments of the response distribution, we consider a new classical sensitivity analysis for incomplete responses that avoids distributional assumptions and employs easily interpreted sensitivity parameters. The procedure is particularly useful for analyses of missing continuous data, an area where normality is traditionally assumed and/or relies on hard-to-interpret sensitivity parameters. We illustrate all analyses with real data sets.
4

Análise de dados categorizados com omissão em variáveis explicativas e respostas / Categorical data analysis with missingness in explanatory and response variables

Frederico Zanqueta Poleto 08 April 2011 (has links)
Nesta tese apresentam-se desenvolvimentos metodológicos para analisar dados com omissão e também estudos delineados para compreender os resultados de tais análises. Escrutinam-se análises de sensibilidade bayesiana e clássica para dados com respostas categorizadas sujeitas a omissão. Mostra-se que as componentes subjetivas de cada abordagem podem influenciar os resultados de maneira não-trivial, independentemente do tamanho da amostra, e que, portanto, as conclusões devem ser cuidadosamente avaliadas. Especificamente, demonstra-se que distribuições \\apriori\\ comumente consideradas como não-informativas ou levemente informativas podem, na verdade, ser bastante informativas para parâmetros inidentificáveis, e que a escolha do modelo sobreparametrizado também tem um papel importante. Quando há omissão em variáveis explicativas, também é necessário propor um modelo marginal para as covariáveis mesmo se houver interesse apenas no modelo condicional. A especificação incorreta do modelo para as covariáveis ou do modelo para o mecanismo de omissão leva a inferências enviesadas para o modelo de interesse. Trabalhos anteriormente publicados têm-se dividido em duas vertentes: ou utilizam distribuições semiparamétricas/não-paramétricas, flexíveis para as covariáveis, e identificam o modelo com a suposição de um mecanismo de omissão não-informativa, ou empregam distribuições paramétricas para as covariáveis e permitem um mecanismo mais geral, de omissão informativa. Neste trabalho analisam-se respostas binárias, combinando um mecanismo de omissão informativa com um modelo não-paramétrico para as covariáveis contínuas, por meio de uma mistura induzida pela distribuição \\apriori\\ de processo de Dirichlet. No caso em que o interesse recai apenas em momentos da distribuição das respostas, propõe-se uma nova análise de sensibilidade sob o enfoque clássico para respostas incompletas que evita suposições distribucionais e utiliza parâmetros de sensibilidade de fácil interpretação. O procedimento tem, em particular, grande apelo na análise de dados contínuos, campo que tradicionalmente emprega suposições de normalidade e/ou utiliza parâmetros de sensibilidade de difícil interpretação. Todas as análises são ilustradas com conjuntos de dados reais. / We present methodological developments to conduct analyses with missing data and also studies designed to understand the results of such analyses. We examine Bayesian and classical sensitivity analyses for data with missing categorical responses and show that the subjective components of each approach can influence results in non-trivial ways, irrespectively of the sample size, concluding that they need to be carefully evaluated. Specifically, we show that prior distributions commonly regarded as slightly informative or non-informative may actually be too informative for non-identifiable parameters, and that the choice of over-parameterized models may drastically impact the results. When there is missingness in explanatory variables, we also need to consider a marginal model for the covariates even if the interest lies only on the conditional model. An incorrect specification of either the model for the covariates or of the model for the missingness mechanism leads to biased inferences for the parameters of interest. Previously published works are commonly divided into two streams: either they use semi-/non-parametric flexible distributions for the covariates and identify the model via a non-informative missingness mechanism, or they employ parametric distributions for the covariates and allow a more general informative missingness mechanism. We consider the analysis of binary responses, combining an informative missingness model with a non-parametric model for the continuous covariates via a Dirichlet process mixture. When the interest lies only in moments of the response distribution, we consider a new classical sensitivity analysis for incomplete responses that avoids distributional assumptions and employs easily interpreted sensitivity parameters. The procedure is particularly useful for analyses of missing continuous data, an area where normality is traditionally assumed and/or relies on hard-to-interpret sensitivity parameters. We illustrate all analyses with real data sets.

Page generated in 0.116 seconds