• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 9
  • 3
  • 2
  • 1
  • Tagged with
  • 34
  • 34
  • 34
  • 12
  • 12
  • 11
  • 11
  • 9
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Evaluation of low-quality recycled concrete pavement aggregates for subgrade soil stabilization

Tavakol, Masoumeh January 1900 (has links)
Doctor of Philosophy / Department of Civil Engineering / Mustaque A. Hossain / Stacey E. Kulesza / Recycled concrete aggregate (RCA) is the byproduct of the demolition of concrete structures and pavements. An estimated 140 million tons of concrete waste is produced annually in the United States, most of which ends up in landfills. The use of RCA to replace quarried aggregates in paving projects is one way to utilize these materials and alleviate concerns regarding this increasing waste stream. RCA usage prevents waste concrete disposal into landfills, resulting in more sustainable use of mineral aggregate sources, and may further reduce costs associated with paving projects. However, the inferior physical properties of RCA, such as the presence of recycled mortar, complicate the incorporation of RCA into new concrete mixtures. State highway agencies such as the Kansas Department of Transportation are facing further issues with RCA from D-cracked pavements, raising the question if D-cracked aggregates should be used in paving operations. No known work has evaluated the effect of RCA from D-cracked pavements in subgrade soil stabilization. This study stabilized a low-plasticity clay in Kansas using RCA and three stabilizing materials (lime, Class C fly ash, and a combination of Portland cement and fly ash). Candidate mixtures with varying proportions of chemical stabilizers and D-cracked aggregates were evaluated using the standard Proctor, unconfined compressive strength, linear shrinkage, and California Bearing Ratio tests. Microstructure characteristics of selected mixtures were explored using scanning electron microscopy (SEM) and energy dispersive X-ray tests. Laboratory test results indicated that RCA, in conjunction with all cementitious materials except lime, improved clay strength, stiffness, and shrinkage properties. SEM results indicated that RCA caused a low void space and a dense arrangement of soil particles. RCA effectively improved evaluated mixture properties when an adequate soil-RCA bond was reached using chemical agents. The long-term performance of full-depth flexible pavements with stabilized mixtures as subgrade was assessed in the AASHTOWare Pavement ME Design (commonly known as MEPDG) software. The life-cycle cost of flexible pavements with stabilized mixtures was estimated for a 40-year design period. Economic analysis results indicated that RCA was cost effective only if it was used with a combination of fly ash and Portland cement.
12

Cement-based stabilization/solidification of zinc-contaminated kaolin clay with graphene nanoplatelets

Wu, Randall 19 May 2021 (has links)
Heavy-metal contamination in soils has become a serious environmental problem. Among all metals, excessive amount of zinc was released to soils over the years. Zinc is not only toxic to human being, but also to plants. High concentration of zinc is extremely phytotoxic. Currently, the most popular method to remediate heavy-metal contaminated soils is stabilization/solidification (S/S) technique as it is cheaper, faster and more effective to remediate heavy metals than other remediation methods. Portland cement is the most-used binder in S/S technique. However, the production of Portland cement has released a significant amount of carbon dioxide, which strongly contributes to global warming. In addition, zinc retards the setting and hydration of Portland cement, which would require more Portland cement to remediate zinc-contaminated sites. Therefore, researchers are looking for new materials to improve the performance of Portland cement in zinc-contaminated soils. In recent years, the application of graphene-based materials in concrete had proved to be effective. Due to relative cost-effectiveness and comparable properties, multi-layer graphene, known as graphene nanoplatelets, may show a promising potential in construction. Moreover, research has reported that graphene nanoplatelets can be exfoliated from graphite and potentially scaled up for full-scale applications. At present, there is no application of graphene nanoplatelets in the S/S of contaminated soils and the roles of graphene nanoplatelets in cement-stabilized zinc-contaminated clay remained unknown. In this research, graphene nanoplatelets were dispersed in solution with a high-shear mixing apparatus. Dispersed graphene nanoplatelets solution was then applied to zinc-contaminated soil along with cement. To evaluate the efficacy of this S/S method, various influencing factors such as mixing sequence, graphene nanoplatelets content, zinc content, cement content, and curing time were studied. An optimum graphene nanoplatelets content was determined through the unconfined compressive strength (UCS) of the stabilized/solidified samples. It was found that at the optimum content, the unconfined compressive strength of cement-stabilized zinc-contaminated clay was improved by 22.3% with the addition of graphene nanoplatelets. Also, graphene nanoplatelets were effective at moderate zinc content and low cement content. Graphene nanoplatelets accelerated cement hydration effectively at early ages. Microstructural analyses indicated that more hydration products were developed in samples with graphene nanoplatelets. At current stage, it is still expensive to apply graphene nanoplatelets in S/S technique; however, it is possible to exfoliate graphite into graphene nanoplatelets in future research. / Graduate / 2022-05-12
13

Mechanical properties of excavated sulfur rich soil stabilized with cement - A laboratory and field experiment

Ziagharib, Alaleh January 2023 (has links)
Sulfide soils are silty soils, often found in saturated conditions, under the groundwater level. Characteristics of these soils, including particle size distribution and consistency limits along with chemical composition and environmental properties, cause excavation to be necessary for construction purposes. The excavated sulfide soil usually is transported and deposited in landfills. These soils are either deposited in saturated conditions or chemical buffers are added to the soil to prevent acidification. Special conditions of these landfills complicate the disposal procedure and the landfill maintenance which makes those financially expensive. Reusing sulfide soil in construction is a solution to reduce the expenses related to the management of sulfide soils. Since the mechanical properties of these soils are not suitable for construction purposes, the first step is to improve soil characteristics to the level that fulfills the needs of construction applications. One solution to improve the mechanical properties of the soil is adding a binder to the soil. The main focus of the research was to improve the mechanical properties of soil. The research activities were divided into two parts. The first part was conducted in a laboratory environment to develop mixtures, while the second focused on transferring the results to field conditions. The laboratory tests included mixing soil and binder i.e., cement was added to the soil at different percentages to evaluate the soil improvement. An unconfined compressive strength (UCS) test was conducted on the stabilized sample to evaluate the efficiency of the stabilization. The resultsof UCS for the stabilized samples were compared. Since the soil contains a high amount of water, the traditional sample preparation was not suitable. Therefore, an alternative method was developed and evaluated. Moreover, the effect of curing time on the strength and consistency limit of stabilized samples was evaluated. At last, the effect of different variables, including porosity, binder content and initial water content, on the UCS of soil was investigated to identify potential correlation between UCS and different soil variables. The results of the tests showed that adding a binder, regardless of the type of sulfide soil, positively affects the UCS of prepared samples and increasing the curing time increased the UCS of the samples. At higher cement content, the effect of curing time was more significant. Also, it was shown that at higher water content, the effect of binder is lower in comparison with the same soil at lower water content. By lowering the water content, the strength of stabilized soil reaches a maximum and drying further the soil, below the optimum water content, led to strength reduction. A correlation between UCS of sample and porosity/binder ratio was employed to predict the strength behavior of stabilized soil based on variables such as porosity, initial water content and binder dosage. In order to evaluate if laboratory results can be applied to geotechnical applications, the second part of this research included a field mixing experiment for a large-scale mixture of soil and cement. The effect of the mixing procedure with common equipment on the homogeneity of industrial-size mixture was investigated. A sampling strategy for collecting representative samples of mixture was selected and assessed. the number of mixing steps and the effect of binder dosage on the uniformity of samples were studied. Results of UCS of samples prepared from field and laboratory mixture were compared and evaluated. A field evaluation was conducted to determine the quality of the mixture and how many mixing steps are required to reduce variability between samples. Two different percentages of binder were added to the 5 Tons of soil. The UCS test samples were prepared from the soil-cement mixture in the same way as they were prepared in the laboratory and cured for a specific time. The UCS test was conducted on cured samples. The test results were compared to evaluate the mixture homogeneity in the field. The results showed that homogeneous mixtures can be obtained in the field with the available equipment. Assessing the sampling strategy showed that increasing the sampling sections from 5 to 12 and preparing single UCS sample from the collected soil provides representative samples from the soil mixture pile. Additionally, it was shown that by increasing mixing steps from 2 to 3, it was possible to eliminate samples with notable lower strength than average UCS. A greater number of mixing steps improves homogeneity while reducing the average UCS. It was found that mixing soil and binder in the laboratory improves strength better than mixing them in the field. When applying laboratory results to field design, this point must be taken into account.
14

Cement Stabilization of Aggregate Base Materials Blended with Reclaimed Asphalt Pavement

Brown, Ashley Vannoy 12 May 2006 (has links) (PDF)
The purpose of this research was to investigate the effects of reclaimed asphalt pavement (RAP) content and cement content on the strength and durability of recycled aggregate base materials. Specifically, the unconfined compressive strength (UCS) and final dielectric value in the Tube Suction Test (TST) were measured in a full-factorial experimental design including five RAP contents, five cement contents, and three replicate specimens of each possible treatment. Specimen mixtures consisted of 0, 25, 50, 75, or 100 percent RAP and 0.0, 0.5, 1.0, 1.5, or 2.0 percent Type I/II Portland cement. Both the RAP and base materials were sampled from the I-84 pavement reconstruction project performed in Weber Canyon near Morgan, Utah, during the summers of 2004 and 2005. The laboratory testing procedures consisted of material characterizations, specimen preparation, and subjection of the specimens to strength and durability testing, and the data were evaluated using analysis of variance (ANOVA) testing. Both the RAP and base materials included in this research were determined to be non-plastic, and the AASHTO and Unified soil classifications for the RAP material were determined to be A-1-a and SM (well-graded sand with gravel), respectively, and for the base material they were A-1-a and SW-SM (well-graded sand with silt and gravel), respectively. The optimum moisture contents (OMCs) for the blended materials were between 5.6 and 6.6 percent, and maximum dry density (MDD) values were between 129.7 and 135.5 lb/ft3. In both cases, decreasing values were associated with increasing RAP contents. The results of the ANOVA performed on the UCS data indicate that UCS decreases from 425 to 208 psi as RAP content increases from 0 to 100 percent and increases from 63 to 564 psi as cement content increases from 0.0 to 2.0 percent. Similarly, the final dielectric value decreases from 14.9 to 6.1 as RAP content increases from 0 to 100 percent and decreases from 14.0 to 5.8 as cement content increases from 0.0 to 2.0 percent. With design criteria requiring 7-day UCS values between 300 and 400 psi and final dielectric values less than 10 in the TST, the results of this research suggest that milling plans should be utilized to achieve RAP contents in the range of 50 to 75 percent, and a cement content of 1.0 percent should be specified for this material. Cement contents less than 1.0 percent are not sufficient to stabilize the material, and greater cement contents may cause cracking. Because control of the actual cement content in the field depends on the contractor's equipment and skill, inspection protocols should be implemented during construction to ensure high-quality work. Additional recommendations are associated with the construction process. The specimens prepared in this research were compacted to relative densities of 100 percent using modified Proctor energy. Therefore, field compaction levels must approach these density values if the same material properties are to be achieved. In addition, all specimens tested in this study were cured at 100 percent relative humidity. Following compaction in the field, cement-treated layers should be moistened frequently during the first few days after construction or promptly sealed with a prime coat or wearing surface to ensure that the cement continues to hydrate. Variability in RAP and cement contents should also be minimized to achieve consistent material properties.
15

Characterization of Recycled Concrete for use as Pavement Base Material

Blankenagel, Brandon J. 20 August 2005 (has links) (PDF)
The use of recycled concrete material (RCM) as pavement base material is a promising but unproven technique for road rehabilitation and construction. A telephone survey conducted to investigate the state of the practice concerning RCM usage in Utah County revealed that RCM is infrequently used in this application due primarily to a lack of practical knowledge about the engineering properties of the material. Therefore, this research was aimed at evaluating the physical properties, strength parameters, and durability characteristics of both demolition and haul-back sources of RCM available in Utah County for use as pavement base material. The study included extensive laboratory and field testing. Laboratory tests included California bearing ratio (CBR), unconfined compressive strength (UCS), stiffness, freeze-thaw cycling, moisture susceptibility, abrasion, salinity, and alkalinity evaluations. Non-destructive testing was utilized in the field to monitor seasonal variation in stiffness of an RCM pavement base layer over a 1-year period. The testing included a dynamic cone penetrometer, ground-penetrating radar, a heavy Clegg impact soil tester, a soil stiffness gauge, and a portable falling-weight deflectometer. The laboratory testing indicated that the demolition material exhibited lower strength and stiffness than the haul-back material and reduced UCS loss after freeze-thaw cycling. However, the demolition material received a moisture susceptibility rating of good in the tube suction test, while the haul-back material was rated as marginal. Both materials exhibited self-cementing effects that led to approximately 180 percent increases in UCS over a 7-day curing period. Seven-day UCS values were 1260 kPa and 1820 kPa for the demolition and haul-back materials, respectively, and corresponding CBR values were 22 and 55. The field monitoring demonstrated that the RCM base layer was susceptible to stiffness changes due primarily to changes in moisture. In its saturated state during spring testing, the site experienced CBR and stiffness losses of up to 60 percent compared to summer-time values. RCM compares well with typical pavement base materials in many respects. Given the laboratory and field data developed in this research, engineers should be able to estimate the strength and durability parameters of RCM needed for pavement design.
16

Assessment of the Tube Suction Test for Identifying Non-Frost-Susceptible Soils Stabilized with Cement

Crook, Amy Lyn 21 October 2006 (has links) (PDF)
Frost heave is a primary mechanism of pavement distress in cold regions. The distress exhibited is dependent on the frost susceptibility of the soil within the depth of frost penetration, the availability of subsurface water, and the duration of freezing surface temperatures. Cement stabilization is one technique used to mitigate the effects of frost heave. The tube suction test (TST) is one possible method for determining the frost susceptibility of soils in the laboratory. The purpose of this research was to assess the utility of the TST for identifying non-frost-susceptible (NFS) materials stabilized with cement. This research investigated two aggregate base materials from Alaska that have exhibited negligible frost susceptibility in the field. The unconfined compressive strength (UCS), final dielectric value in the TST, and frost heave at three levels of cement treatment and in the untreated condition were evaluated for both materials. The data collected in this research indicate that, for the two known NFS materials included in this study, the TST is a good indicator of frost heave behavior. The total heave of the untreated materials was approximately 0.15 in. at the conclusion of the 10-day freezing period, which classifies these materials as NFS according to the U.S Army Corp of Engineers. Both materials had final dielectric values of less than 10 in the TST, indicating a superior moisture susceptibility rating. The results of this research suggest that the TST should be considered for identifying NFS materials, including those stabilized with cement. Additional testing should be performed on known NFS materials stabilized with cement and other additives to further assess the validity of using the TST to differentiate between frost-susceptible and NFS materials. Consistent with previous studies, this research indicates that, once a sufficient amount of cement has been added to significantly reduce frost heave, additional cement has only a marginal effect on further reduction. Therefore, to avoid unnecessary expense in construction, the minimum cement content required for preventing frost heave should be identified through laboratory testing and specified by the engineer. In this work, UCS values ranging between 200 psi and 400 psi after a 7-day cure were typically associated with this minimum cement content. Because the scope of this research is limited to two aggregate base materials, further testing is also necessary to validate this finding.
17

Effect of High Percentages of Reclaimed Asphalt Pavement on Mechanical Properties of Cement-Treated Base Material

Tolbert, Jacob Clark 10 July 2014 (has links) (PDF)
Full-depth reclamation (FDR) is an increasingly common technique that is used to rehabilitate flexible pavements. Implementation of FDR on rehabilitation projects produces several desirable benefits. However, these benefits are not fully realized due to the fact that state department of transportation specifications typically limit the reclaimed asphalt pavement (RAP) content of pavement base material to 50 percent. The objective of this research was to evaluate the effects of RAP content, cement content, temperature, curing time, curing condition, and moisture state on the strength, stiffness, and deformation characteristics of cement-treated base (CTB) mixtures containing high percentages of RAP.For this research, one aggregate base material and one RAP material were used for all samples. RAP content ranged from 0 to 100 percent in increments of 25 percent, and low, medium, and high cement levels corresponding to 7-day unconfined compressive strength (UCS) values of 200, 400, and 600 psi, respectively, were selected for testing. Moisture-density, UCS, resilient modulus, and permanent deformation tests were performed for various combinations of factors, and several statistical analyses were utilized to evaluate the results of the UCS, resilient modulus, and permanent deformation testing.The results of this work show that CTB containing RAP can be made to achieve 7-day UCS values approaching 600 psi regardless of RAP content. With regards to stiffness, the data collected in this study indicate that the resilient modulus of CTB containing RAP is affected by temperature in the range from 72 to 140°F for the low cement level. Permanent deformation of CTB containing RAP is significantly affected by RAP content and cement level at the test temperature of 140°F. At the low cement level, temperature is also a significant variable. As the 7-day UCS reaches approximately 400 psi, permanent deformation is reduced to negligible quantities. The results of this research indicate that the inverse relationship observed between permanent deformation and 7-day UCS is statistically significant.Given that the principle conclusion from this work is that CTB with high RAP contents can perform satisfactorily as a base material when a sufficient amount of cement is applied, agencies currently specifying limits on the percentage of RAP that can be used as a part of reclaimed base material in the FDR process should reevaluate their policies and specifications with the goal of allowing the use of high RAP contents where appropriate.
18

Influence of Curing Temperature on Strength of Cement-treated Soil and Investigation of Optimum Mix Design for the Wet Method of Deep Mixing

Ju, Hwanik 15 January 2019 (has links)
The Deep Mixing Method (DMM) is a widely used, in-situ ground improvement technique that modifies and improves the engineering properties of soil by blending the soil with a cementitious binder. Laboratory specimens were prepared to represent soil improved by the wet method of deep mixing, in which the binder is delivered in the form of a cement-water slurry. To study the influence of curing temperature on the strength of the treated soil, specimens were cured in temperature-controlled water baths for the desired curing time. After curing, unconfined compressive strength (UCS) tests were conducted on the specimens. To investigate the optimum mix design for the wet method of deep mixing, UCS tests were performed to measure the strength of cured specimens, and laboratory miniature vane shear tests were conducted on uncured specimens to measure the undrained shear strength (su), which is used to represent the consistency of the mixture right after mixing. The consistency is important for field mixing because a softer mixture is easier to mix thoroughly. Based on the UCS test results, an equation that can provide a good fit to the strength data of the cured binder-treated soil is proposed. When the curing temperature was changed during curing, the UCS of the specimen cured at a low temperature and then cured at a high temperature was greater than the UCS of the specimen cured at a high temperature first. This seems to be due to different effects of elevated curing temperatures at early and late curing times on the cement reaction rates, such that elevating the curing temperature later produces a more constant reaction rate, which contributes to the reaction efficiency. An optimum mix design that minimizes the amount of binder while satisfying both a target strength of the cured mixture and a target consistency of the uncured mixture can be established by using the fitted equations for UCS and su. The amount of binder required for the optimum mix design increases as the plasticity of the base soil increases and the water content of the base soil (wbase soil) decreases. / Master of Science / The Deep Mixing Method (DMM) is a ground improvement technique widely used to improve the strength and stiffness of loose sands, soft clays, and organic soils. The DMM is useful for both inland and coastal construction. There are two types of deep mixing. The dry method of deep mixing involves adding the binder in the form of dry powder, and the wet method of deep mixing involves mixing binder-water slurry with the soil. The strength of the cured mixture is significantly influenced by the amount of added cement and water, the curing time, and the curing temperature. This research evaluates the influence of curing temperature on the strength of cured cement-treated soil mixture. Mixture proportions and curing conditions also influence the consistency of the mixture right after mixing, which is important because it affects the amount of mixing energy necessary to thoroughly mix the binder slurry with the soil. This research developed and evaluated fitting equations that correlate the cured mixture strength and the uncured mixture consistency with mixture proportions and curing conditions. These fitting equations can then be used to select an economical and practical mix design method that minimizes the amount of binder needed to achieve both the desired cured strength and uncured consistency. The amount of binder required for the optimum mix design increases as the plasticity of the base soil increases and the water content of the base soil (wbase soil) decreases.
19

Barreiras de solos estabilizados com cal e cimento para proteção ambiental / Soil barriers chemically stabilized with lime and cement to environmental protection

Loch, Felipe de Campos 16 December 2013 (has links)
Este trabalho apresenta a avaliação dos efeitos da estabilização química com cal e cimento na condutividade hidráulica e resistência à compressão de um solo arenoso proveniente da Formação Botucatu (Estado de São Paulo, Brasil), com o objetivo de obter um material menos permeável e mais resistente. O projeto e análise de experimentos foram realizados através de um planejamento fatorial 3², com duas variáveis independentes: teor de umidade e porcentagem de estabilizante, variando em três níveis cada. Foi utilizado cal hidratada CH-III, cimento Portland CP II-Z32 e água fornecida pela concessionária local. Os ensaios de condutividade hidráulica (K) foram executados em permeâmetros de carga constante. Foram realizados ensaios de resistência a compressão simples (RC) após 7 e 28 dias de cura. As amostras de solo estabilizado e natural foram compactadas na energia Proctor Normal. Na avaliação da estrutura das amostras de solo estabilizado verificou-se a alteração da matriz de poros promovida pela adição de cal e cimento. Após a obtenção dos resultados, análises estatísticas possibilitaram avaliar os efeitos das variáveis independentes sobre o K e RC. Pelo método de superfície de respostas foi possível demonstrar o comportamento das misturas e identificar a tendência de alteração das propriedades. As amostras de solo-cimento alcançaram reduções de condutividade hidráulica de até 9,5 x 10-7 m/s e o menor valor experimental de K foi de 1,4 x 10-8 m/s. Os ensaios de RC, com 28 dias de cura, apresentaram acréscimo de resistência de até 5,1 MPa e os resultados obtidos possuem uma variação, aproximadamente, entre 0,1 e 5,1 MPa. O procedimento adotado permitiu avaliar a influência dos fatores e determinar as misturas ótimas para cada estabilizante. / A laboratory study was conducted to evaluate the effects of lime and cement stabilization over the hydraulic conductivity and unconfined compressive strength of a sandy soil from Botucatu Formation (São Paulo State, Brazil) with the intend to generate a less permeable and more resistant material. The experiment was performed using the technique of factorial design 3², with the two independent variables: moisture content and stabilizer percentage, varying on three levels each. Hydraulic conductivity (K) was measured in constant-head permeameters. Unconfined compressive strength (CS) was measured after 7 and 28 days of curing. The samples of stabilized and natural soils were compacted with the normal Proctor energy. The evaluation of the stabilized soil structure verified a pore matrix modification promoted by lime and cement addition. With the results of the characterization, statistical analysis allowed to assess the effects of the variable factors on K and CS. The response surface method was used to demonstrate the hydraulic and compressive strength behavior of the stabilized soil. The soil-cement hydraulic conductivity achieved reductions up to 9.5 x 10-7 m/s and the lowest K experimental value was 1.4 x 10-8 m/s. The compressive strength, with 28 days of curing, presented an increase in CS up to 5.1 MPa and the obtained results showed a range between 0.1 and 5.1 MPa. The adopted experimental procedure allows the assessment of the variables influence and the determination of the optimal mixtures for each stabilizer.
20

Misturas de chalk com cimento : estudo da rigidez, resistência e durabilidade

Hoch, Bruna Zakharia January 2017 (has links)
O chalk é uma rocha calcária formada de calcita, com até 95% de teor de carbonato de cálcio. Pode ser encontrado no oeste europeu e cobre aproximadamente 15% da área do Reino Unido. Muitas construções e obras de infraestrutura são realizadas sobre o chalk, e situações imprevisíveis ainda acontecem pela falta de conhecimento do seu comportamento geotécnico. Sem ser perturbado, o chalk é uma rocha fraca que permanece estável. Entretanto, quando esmagado, ele rompe facilmente. Estes desafios, somados à abundância deste material no Reino Unido, fez com que ele passasse a ser estudado nos últimos anos para um melhor entendimento de suas características e comportamento. Uma das formas de melhoramento do comportamento do chalk é com adição de cimento Portland ao material, desenvolvida nesta pesquisa. O chalk utilizado nos testes é da região de St. Nicholas, Kent, no Reino Unido, classificado, de acordo com a CIRIA, como A/B, com baixa a média densidade. O material foi moído em laboratório até a obtenção de um silte arenoso, com D50 de 0,035 mm. O material foi misturado com cimento Portland de alta resistência inicial, nas porcentagens 3, 5 e 7% em relação à massa de solo seco. Os resultados dos testes de compressão simples e de tração por compressão diametral e de rigidez inicial (G0) mostraram um ganho de resistência com o aumento do teor de cimento e dos pesos específicos aparentes secos nas amostras estudadas. Os dados de resistência foram analisados em função da porosidade pelo teor volumétrico de cimento (/Civ), mostrando a influência do nível de cimentação e do nível de compactação na resistência da mistura. O expoente de ajuste de 0,28 no volume de agente cimentante gerou melhores coeficientes de determinação nos resultados. Houve uma relação praticamente linear entre a rigidez inicial e a resistência à compressão simples. As curvas de rigidez ao longo do tempo mostraram uma tendência logarítmica da evolução de G0 com o tempo, para todas as amostras. Nos ensaios de durabilidade, quanto maior o peso específico e teor de cimento da amostra, menor a perda de massa. A rigidez permaneceu praticamente constante durante os 12 ciclos. / Chalk is a limestone formed by calcite, with up to 95% of calcium carbonate content. It can be found in Western Europe and it covers about 15% of the area of the United Kingdom. Many constructions and infrastructure works are carried out on chalk, and unpredictable situations still happen due to the lack of knowledge of its geotechnical behavior. Undisturbed, chalk is a weak rock that remains stable. However, when crushed, it breaks easily. These challenges, coupled with the abundance of this material in the UK, have led chalk to be studied in recent years for a better understanding of its characteristics and behavior. One of the ways of improving the chalk behavior is with the addition of Portland cement to the material, which is developed in this research. The chalk used in the testing was collected in St. Nicholas, Kent, UK, and characterised as CIRIA Grade A/B, low to medium density. The material was crushed in the laboratory until it became sandy silt, with D50 of 0.035 mm. The material was mixed with high initial strength Portland cement, at 3, 5 and 7% in relation to the dry soil mass The results of unconfined compression, traction by diametral compression and initial stiffness (G0) tests showed a gain of strength with the increase of cement content and specific dry unit weights in the studied samples. The strength data was analyzed as a function of the porosity by the volumetric content of cement (/Civ), showing the influence of the level of cementation and compaction in the strength of the mixture. The adjustment exponent of 0.28 in the cementing agent volume generated better determination coefficients in the results. There was an almost linear relationship between initial stiffness and unconfined compression strength. The stiffness versus time curves showed a logarithmic trend for the evolution of G0 with time in all samples. In the durability tests, the higher the dry unit weight and cement content of the sample, the lower the mass loss. The stiffness remained practically constant during the 12 cycles.

Page generated in 0.0936 seconds