• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 10
  • 10
  • 8
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Field application of the PM Device and assessment of early age behaviors of cement stabilized pavement layers

Sullivan, William Griffin 30 April 2021 (has links)
Cement stabilized material used for subbase or base pavement layers has been a widely accepted practice by many state Departments of Transportation (DOTs); particularly, for DOTs with limited access to quality crushed aggregates for pavement construction. Despite over 100 years of use, construction specifications governing cement stabilized pavement layers have largely remained the same and are primarily method based specifications (i.e. individual components evaluated and construction methods prescribed) rather than evaluating or testing mechanical properties of the end product. With the recent emergence of the Plastic Mold compaction Device (PM Device), multiple agencies are looking to depart from method based soil-cement specifications by implementing the PM Device for design and construction quality control and quality assurance (QC/QA) testing. Prior to this dissertation, PM Device protocols have been validated under lab conditions but only limited field validation had been performed. Additionally, time delay between initial mixing and compaction of cement stabilized soils is a known issue, which can affect compaction of PM Device specimens as well as construction target density values determined through AASHTO T134 Proctor testing. The main objectives of this dissertation are to investigate time delay effects on cement stabilized soil compactability during Proctor testing, develop a nationally recognized Standard Practice for PM Device specimen fabrication, and perform PM Device field evaluations for QC/QA testing. Lab experiments were conducted to investigate time delay effects and finalize PM Device Standard Practice protocols. Five field projects were evaluated to validate PM Device QC/QA applications and Standard Practice protocols in a construction environment. Time delay was observed to have a notable detrimental influence on compactability during AASHTO T134 Proctor testing and PM Device specimen fabrication. Recommended guidance was provided to characterize compaction delay effects. AASHTO PP92-19 was developed and published by AASHTO's Committee on Materials and Pavements to standardize specimen fabrication for the 3x6 inch and 4x8 inch versions of the PM Device. The PM Device fared well for construction activities when benchmarked relative to density, strength, and modulus of cores taken from constructed cement stabilized pavement layers. The PM Device was recommended for implementation consideration by state DOTs and other agencies.
2

Cement stabilization of poorly graded sand

Sisung, Lana Grayson Brown 08 December 2023 (has links) (PDF)
Stabilization of poorly graded sand in full-scale applications is challenging. This thesis evaluated cement-stabilized sand and had two objectives: (1) evaluation of stabilized material using the PM device to quantify engineering properties for future comparison to alterative materials and to investigate the effectiveness of the device with sand and (2) investigation of the merits of alternative application of cement to sand to benchmark against other topically applied materials. The PM device was successfully used to recommend 10% cement for field studies with one sand, successfully allowed data collection in laboratory and field applications, and its potential in sand seems promising though more overarching conclusions on characterization of sand using the PM device are withheld for subsequent efforts. Topical application methods developed in this thesis were able to percolate cement into sand and produce an average estimated unconfined compressive strength of 245 psi measured on cores that were 2.5 inches thick.
3

Assessment of the Tube Suction Test for Identifying Non-Frost-Susceptible Soils Stabilized with Cement

Crook, Amy Lyn 21 October 2006 (has links) (PDF)
Frost heave is a primary mechanism of pavement distress in cold regions. The distress exhibited is dependent on the frost susceptibility of the soil within the depth of frost penetration, the availability of subsurface water, and the duration of freezing surface temperatures. Cement stabilization is one technique used to mitigate the effects of frost heave. The tube suction test (TST) is one possible method for determining the frost susceptibility of soils in the laboratory. The purpose of this research was to assess the utility of the TST for identifying non-frost-susceptible (NFS) materials stabilized with cement. This research investigated two aggregate base materials from Alaska that have exhibited negligible frost susceptibility in the field. The unconfined compressive strength (UCS), final dielectric value in the TST, and frost heave at three levels of cement treatment and in the untreated condition were evaluated for both materials. The data collected in this research indicate that, for the two known NFS materials included in this study, the TST is a good indicator of frost heave behavior. The total heave of the untreated materials was approximately 0.15 in. at the conclusion of the 10-day freezing period, which classifies these materials as NFS according to the U.S Army Corp of Engineers. Both materials had final dielectric values of less than 10 in the TST, indicating a superior moisture susceptibility rating. The results of this research suggest that the TST should be considered for identifying NFS materials, including those stabilized with cement. Additional testing should be performed on known NFS materials stabilized with cement and other additives to further assess the validity of using the TST to differentiate between frost-susceptible and NFS materials. Consistent with previous studies, this research indicates that, once a sufficient amount of cement has been added to significantly reduce frost heave, additional cement has only a marginal effect on further reduction. Therefore, to avoid unnecessary expense in construction, the minimum cement content required for preventing frost heave should be identified through laboratory testing and specified by the engineer. In this work, UCS values ranging between 200 psi and 400 psi after a 7-day cure were typically associated with this minimum cement content. Because the scope of this research is limited to two aggregate base materials, further testing is also necessary to validate this finding.
4

Strength and Deformation Characteristics of a Cement-Treated Reclaimed Pavement with a Chip Seal

Wilson, Bryan T. 17 March 2011 (has links) (PDF)
The objective of this research was to analyze the strength and deformation characteristics of a cement-treated base (CTB) constructed using full-depth reclamation, microcracked, and then surfaced with a single chip seal. In this field study, strength characteristics of the CTB layer were determined at the time of construction, and then both strength and deformation characteristics were evaluated after 9 months of low-volume, heavy truck traffic. After 9 months, observed distresses included transverse cracking, rutting, and chip seal joint failure. The loss of the chip seal was caused by poor chip seal construction practices and not a deficiency in the CTB layer. The importance of the role of the chip seal as a wearing course was made evident by these failures since the exposed CTB often exhibited material loss. The average ride qualities in and out of the wheel path were in the fair ride category; the roughness was not likely caused by trafficking but probably resulted from construction or climatic factors. Structural testing performed after 9 months of service indicated that the CTB stiffness and modulus were greater than the values measured after microcracking at the time of construction, indicating continued strength gain. However, trafficking over the 9-month period had caused significantly lower stiffnesses measured in the wheel paths than between the wheel paths. The average unconfined compressive strength (UCS) of the cores tested at 9 months was not significantly different than the average UCS of the field-compacted specimens tested at 6 weeks. Based on the observed performance of the CTB and chip seal evaluated in this research, recommendations for improved CTB performance include the use of a thicker and/or stiffer CTB layer, ensuring a smooth CTB surface during construction, and application of a double chip seal or equivalent.
5

Pozzolanic Additives To Control Dispersivity Of Soil

Pratibha, R 12 1900 (has links) (PDF)
The aim of the present investigation is to improve the geotechnical properties of dispersive soil by reducing their dispersivity after elucidating the important mechanisms controlling the dispersivity of the soils. Dispersive soils have unique properties, which under certain conditions deflocculate and are rapidly eroded and carried away by water flow. These soils are found extensively in the United States, Australia, Greece, India, Latin America, South Africa and Thailand. The mechanism of dispersivity of soils is a subject matter of great interest for geotechnical engineers. In the earlier days clays were considered to be non erosive and highly resistant to water erosion. However, recently it was found that highly erosive clay soils do exist in nature. Apart from clayey soil, dispersivity is also observed in silty soils. The tendency of the clays to disperse or deflocculate depends upon the mineralogy and soil chemistry and also on the dissolved salts in the pore water and the eroding water. Such natural dispersive soils are problematic for geotechnical engineers. They are clayey soils which are highly susceptible to erosion in nature and contain a high percentage of exchangeable sodium ions, (Na+). It is considered that the soil dispersivity is mainly due to the presence of exchangeable sodium present in the structure. When dispersive clay soil is immersed in water, the clay fraction behaves like single-grained particles; that is, the clay particles have a minimum of electrochemical attraction and fail to closely adhere to, or bond with, other soil particles. This implies that the attractive forces are less than the repulsive forces thus leading to deflocculation (in saturated condition).This weakens the aggregates in the soil causing structural collapse. Such erosion may start in a drying crack, settlement crack, hydraulic fracture crack, or other channel of high permeability in a soil mass. Total failure of slopes in natural deposits is initiated by dispersion of clay particles along cracks, fissures and root holes, accelerated by seepage water. For dispersive clay soils to erode, a concentrated leakage channel such as a crack (even a very small crack) must exist through an earth embankment. Erosion of the walls of the channel then occurs along the entire length at the same time. Many slope and earth dam failures have occurred due to the presence of dispersive soils. Unlike erosion in cohesionless soils, erosion in dispersive clay is not a result of seepage through the pores of clay mass. However, the role of type of clay and its Cation exchange capacity in the dispersion of soil is not well understood. Data on the presence, properties, and tests for identification of dispersive clays is scarce. Hence, an attempt is made, in this thesis, to develop reliable methods to identify these soils and understand the extent of their dispersivity as well as to develop methods to control their dispersivity. The present study deals with the characterization of a local dispersive soil collected from southern part of Karnataka State. This study has focused on comprehensive tests to assess the dispersivity of the soils by different methods and to methods to improve geotechnical properties by reducing the dispersivity of the soil. An attempt is made to reduce the dispersivity of soil by using calcium based stabilizers such as lime, cement and fly ash. The mechanism of improvement in reducing the dispersivity of the soil with calcium based stabilizers has been studied. One of the important mechanism by which the dispersivity of the soil is reduced is by inducing cementation of soil particles. The differences in effectiveness of different additives are due to their differences in abilities to produce cementitious compounds. Although all the additives increased the strength of the soil and reduced the dispersivity of the soil, cement was found to significantly reduce the dispersivity of the soil, compared to the other two additives lime and fly ash. Cement is more effective as sufficient cementitious compounds are produced on hydration without depending on their formation. A detailed review of literature on all aspects connected with the present study is given in Chapter 2. A comprehensive description of dispersive soils present worldwide has been brought out in this section. Based on this survey, the scope of the present investigation has been elaborated at the end of the chapter. To understand the reasons for dispersivity of the soil and to estimate its degree of dispersivity, it is essential to assess standard methods to characterize the soil. Chapter 3 presents a summary of material properties and testing programs. The results of geotechnical characterization of the soil, the index properties of the soilspecific gravity, sieve analysis, Atterberg’s limits are discussed in Chapter 4. The physico chemical characteristics play an important role in determining the amount of dispersivity of the soil. Dispersive soils have two main characteristics which define its dispersivity chemically. These are Sodium Adsorption Ratio (S.A.R) and Exchangeable Sodium Percentage (E.S.P). The two characteristics are determined from the Cation exchange capacity of the soil. Exchangeable Sodium Percentage is defined as the concentration of sodium ions present in the soil with respect to the Cat ion exchange capacity of the soil. And Sodium Adsorption Ratio is used to quantify the free salts present in the pore water. Since Atterberg’s limits and grain size analysis do not help in identifying dispersive soils or in quantifying its dispersivity, two other tests- Emerson Crumb test and double hydrometer test were carried out on the soil. Emerson crumb test is a simple way for identification of dispersive soils. In this test, a crumb of soil measuring about 1mm diameter is immersed in a beaker containing distilled water and the subsequent reaction is observed for 5 minutes. It is solely based on direct qualitative observations. Depending on the degree of turbidity of the cloud formed in the beaker, the soil is classified in one of the four levels of dispersion in accordance with ASTM-D6572. Since this test is mainly a qualitative test and does not help in quantifying the dispersivity, it cannot be depended upon completely in identifying a dispersive soil. Another test double hydrometer test, which helps in quantifying the dispersivity of the soil, was also conducted on the soil. This test involves in conducting the particle size distribution using the standard hydrometer test in which the soil specimen was dispersed in distilled water with a chemical dispersant. A parallel hydrometer test was conducted on another soil specimen, but without a chemical dispersant. The dispersing agent used for the experiment was sodium hexametaphosphate. The percent dispersion is the ratio of the dry mass of particles smaller than 0.005 mm diameter of the test without dispersing agent to the test with dispersing agent expressed as a percentage. The double hydrometer test was carried out according to Double Hydrometer Test (ASTM D4221). Apart from the conventional tests, attempts are made to consider shrinkage limit test and unconfined compression test to determine the dispersivity of the soil. For this purpose, the shrinkage limit of the soil was determined with and without dispersing agent. The initial shrinkage limit of the untreated soil reduced on treating it with dispersing agent, thus indicating that the soil had further dispersed on addition of dispersing agent. In order to carry out the unconfined compression strength, the maximum dry density and optimum moisture content was determined through the compaction test. The soil was then treated with dispersing agent and compacted at the optimum moisture content. The soil exhibited high degree of dispersion through the strength test. Hence it is necessary to stabilize the soil with additives. Detailed experimental program has been drawn to find methods to improve the geotechnical properties and to reduce the dispersivity of the soil. Chapter 5 presents the investigations carried out on the dispersive soil with lime. The importance of lime stabilization and the mechanism of lime stabilization have been discussed initially. Commercially obtained hydrated lime was used in the present study. The soil was treated with three different percentages of lime 3, 5 and 8. The curing period was varied from one day to twenty eight days. The effect of addition of lime on various properties of the soil such as pH, Atterberg’s limits, compaction test and unconfined compression test is elaborated in chapter 5. The pH of the soil was maximum on addition of 3% lime. On further addition, the pH decreased and remained constant. The liquid limit of the soil increased on adding 3% lime and decreased with further lime content. The compaction test conducted on the soil showed an increase in maximum dry density of the soil and reduction in optimum moisture content with 3% lime content. On further increase in the lime content, the soil showed a decrease in the maximum dry density and increase in optimum moisture content. The unconfined compressive strength of the soil also increased on increasing lime content upto 5%. The variation in strength of the soil with respect to curing period was also compared. Optimum lime content arrived at based on the above conducted tests was 3%. The effect of lime in reducing the dispersivity of the soil through shrinkage limit test and unconfined compression test is also presented in this chapter. Details of the efforts made on the soil with fly ash are presented in Chapter 6.The fly ash used for stabilization of Suddha soil was of Class F type. This type of fly ash contains low reactive silica and lime. The effect of varying fly ash content on the properties of Suddha soil by varying the percentage of fly ash from 3 to 10 percentages is discussed in this chapter. The tests conducted on fly ash treated Suddha soil were pH test, compaction test, Atterberg’s limits and unconfined compression test with varying curing period. The fly ash treated Suddha soil was cured from one day to twenty eight days for the unconfined compressive strength analysis. The pH of the soil system increased with increasing percentage of fly ash. The increase in liquid limit was marginal on addition of fly ash. The maximum dry density of fly ash treated Suddha soil decreased continuously and the optimum moisture content of the treated soil increased with increasing fly ash content. The unconfined compressive strength of Suddha soil increased with increase in fly ash content upto 8% and then decreased for fly ash content of 10%. For all the percentages of fly ash added, the strength of the soil increased with increase in the curing period. The effect of fly ash in reducing the dispersivity of the soil was carried out using shrinkage limit and unconfined compression test. It was seen that on increasing the fly ash content, the soil treated with dispersing agent showed an increase in the shrinkage limit. Also, the same trend was observed for the unconfined compression strength to determine dispersivity. Optimum fly ash was determined as 8% with the help of all the tests conducted on the soil. Since the improvement in the properties of the soil with lime and fly ash was not very high, Cement was also considered as another additive used for stabilization of Suddha soil. It is known that soil with lesser amount of clay content will respond well with cement. The effect of cement addition on various properties of Suddha soil has been brought out in Chapter 7. It was found that addition of cement had positive effects on all the properties of Suddha soil. The pH of the soil increased for all the percentages of cement addition. The liquid limit of the soil increased on increasing the cement content. The shrinkage limit also showed a similar trend. The optimum moisture content of the soil decreased on increasing the cement content for Suddha soil and the maximum dry density increased for cement treated Suddha soil. The soil showed the maximum dry density at 8% cement content. The unconfined compression strength conducted on cement treated Suddha soil increased significantly for higher cement contents and also with curing period. Suddha soil when treated with 8% cement content exhibited maximum strength in comparison to other percentages. Also, the effect of cement in reducing the dispersivity of the soil was carried out using shrinkage limit and unconfined compression test. The shrinkage limit of the soil increased for all percentages of cement content, even in the presence of dispersing agent. Through the unconfined compression strength for dispersivity, it could be seen that 8% cement treated Suddha soil had the least dispersion. Optimum cement content was derived as 8% with the help of the tests conducted on the soil. A comparison of effect of all the additives on the strength of the soil as well as effect of the additives in reducing the dispersivity of the soil is discussed in Chapter 8. The effect of additives on the shrinkage limit of the soil with and without dispersing agent has been compared. The variation in shrinkage limit of the soil when treated with the additives was due to the different mechanisms involved in reducing the dispersivity by each additive. The effect on the unconfined compression strength of the soil treated with the additives with and without dispersing agent is also brought out in this chapter. It was noted that the dispersion exhibited through shrinkage limit test was lesser as compared to the percentage dispersivity exhibited through unconfined compression test. Hence it could be said that dispersion of the soil is due to loss of cohesion than volume change behavior. Also, the unconfined compression strength of the soils with respect to curing period is compared. The percentage dispersivity calculated through these tests is summarized and compared. With the help of this it could be said that to control the dispersivity of the soil, it is necessary to enhance the strength of the soil. The general summary and major conclusions drawn from the thesis are presented in Chapter 9.
6

Evaluation of Chemically Stabilized Subgrades with High Sulfate Concentrations

Kennedy, Kalub S. 11 June 2019 (has links)
No description available.
7

Optimizacija sastava nosećeg sloja kolovozne konstrukcije na bazi agregata od hladno recikliranog asfalta sa aspekta mehaničkih karakteristika / Optimization of the pavement base layer content on the basis of thereclaimed asphalt pavement aggregate in terms of mechanicalproperties

Jakovljević Radomir 21 September 2016 (has links)
<p>U disertaciji su prikazani rezultati sopstvenog eksperimentalnog istraživanja<br />izvr&scaron;enog na uzorcima pripremljenim sa različitim uče&scaron;ćem struganog asfalta (RAP)<br />i dodatnog - &quot;novog&quot; drobljenog kamenog agregata. Variranjem uče&scaron;ća struganog<br />asfalta i dodatnog drobljenog kamenog agregata i variranjem uče&scaron;ća oba veziva<br />omogućeno je praćenje uticaja sastava na mehaničke karakteristike me&scaron;avine.<br />Uticaj vrste i količine upotrebljenog veziva na mehaničke karakteristike nosećeg<br />sloja kolovoza sagledano je kroz variranje sadržaja cementa i bitumenske emulzije.<br />Predmet istraživanja je definisanje međusobne zavisnosti odnosno korelacije,<br />određenih mehaničkih karakteristika me&scaron;avine u funkciji vrste i količine<br />komponentnih materijala i veziva i ocena njihovih fundamentalnih mehaničkih<br />karakteristika.</p> / <p>In dissertation are resented results of own experimental research on<br />samples that have been prepared with different amount of reclaimed<br />asphalt (RAP) and the additional - &quot;new&quot; crushed stone aggregate. By<br />varying participation of reclaimed asphalt and additional crushed stone<br />and varying participation of both binders monitoring of the impact of the<br />composition on the mechanical properties of the mixture was enabled.<br />The influence of type and amount of binder on the mechanical properties<br />of the pavement base layer is seen through variation in the content of<br />cement and bitumen emulsion. The subject of the research is to define the<br />mutual dependence and correlation of certain mechanical characteristics<br />of the mixture as a function of the types and quantities of component<br />materials and binders and evaluation of their fundamental mechanical<br />properties.</p>
8

Fracture Behaviour including Size Effect of Cement Stabilised Rammed Earth

Hanamasagar, Mahantesh M January 2014 (has links) (PDF)
Rammed earth is a monolithic construction formed by compacting processed soil in progressive layers. Rammed earth is used for the construction of load bearing walls, floors, sub base material in roadways, airport runways, taxiways, aprons, foundations and earthen bunds. Soil, sand, cement and water are the ingredients used for the preparation of cement stabilized rammed earth (CSRE) specimens. The cracking in a rammed earth structure is due to the development of tensile stresses. The tensile stresses are generated due to various causes like unequal settlement of foundation, eccentric loading and / or lateral loading such as wind pressure and earthquake on an earth structure. The cracking in a rammed earth structure causes the failure of its intended function. For example formation of crack may lead to the instability of an embankment slope. And earthen dam can be destroyed gradually by erosion of soil at the crack surface (Harison et al. 1994). Hence, it becomes important to understand the fracture behaviour of cement-stabilized rammed earth structures. Well focused studies in understanding the fracture behaviour of CSRE structures are scanty. The present work attempts to address some issues on the fracture behaviour of CSRE including size effect. Through an experimental programme material properties viz. compressive strength, tensile strength and stress-strain relationships are generated for two chosen densities, 17 and 18.5 kN/m3 of CSRE both in dry and saturated condition. Soil composition, density, cement content and moisture content of the specimen during testing influence the characteristics of CSRE. In the present investigation keeping the cement at 10%, the density is varied choosing a soil-sand mixture having optimum grading limits. The basic raw materials used are soil, sand, cement and water in the ratio of 1 : 1.5 : 0.25 : 0.34 by weight. The strength properties studied alone are inadequate to predict the mechanics of fracture due to the presence of microscopic flaws, cracks, voids and other discontinuities. Therefore, some linear elastic fracture parameters such as mode I fracture toughness (KIc), critical energy release rate (GIc), net section strength (f net) and notch sensitivity are calculated, presuming that CSRE is still a brittle material because it is yet to be confirmed that CSRE is a quasibrittle material. In fact, in the present work, it is shown that CSRE has significant amount of softening. A comprehensive experimental work has been undertaken to test CSRE beam specimens for two densities, three sizes of beam and three notch to depth ratios under three point bending (TPB) in a closed loop servo-controlled machine with crack mouth opening displacement control. Results indicate that the CSRE in dry condition exhibits a greater resistance to fracture than the saturated specimen. The variation of net section strength with the notch depth is not significant. Therefore the CSRE material is notch insensitive, implying that it is less brittle. An experimental program was undertaken to determine the nonlinear fracture parameters of beam specimens both in dry and saturated condition. The influence of moisture content, density, size of the specimen as well as notch to depth ratio of the specimen on RILEM fracture energy (G F ) are presented. The GF values increase with increase in density and size of the specimen, while they decrease with increase in notch to depth ratio. Results clearly show that the total energy absorbed by the beams (W OF ) and RILEM fracture energy (G F ) for all specimens tested in dry state are higher compared to the specimens tested in saturated state, indicating that the dry specimen offers higher resistance to the crack propagation. The RILEM fracture energy GF , determined from TPB tests, is said to be size dependent. The assumption made in the work of fracture is that the total strain energy is utilized for the fracture of the specimen. The fracture energy is proportional to the size of the fracture process zone (FPZ), which also implies that size of FPZ increases with increase in the un-cracked ligament (d - a) of beam. This also means that FPZ is proportional to the depth d for a given notch to depth ratio, because for a given notch/depth, (d - a) which is also is proportional to d because is a constant. This corroborates the fact that fracture energy increases with size. Interestingly, the same conclusion has been drawn by Karihaloo et al. (2006). They have plotted a curve relating fracture process zone length and overall depth the beam. In the present study a new method namely Fracture energy release rate method proposed by Muralidhara et al. (2013) is used. In the new method the plot of GF /(d - a) versus (d - a) is obtained from a set of experimental results. The plot is found to follow power law and showed almost constant value of GF /(d - a) at larger ligament lengths. This means the fracture energy reaches a constant value at large ligament lengths reaffirming that the fracture energy from very large specimen is size-independent. This Fracture energy release rate method is used to determine size-independent fracture energy GRf , based on the relationship between RILEM fracture energy and the un-cracked ligament length. The experimental results from the present work agree well with the proposed new method. Similarly, the method is extended to determine nominal shear strength τv for large size beam. Results show that for both densities GRf decrease in saturated condition, while in dry condition as the density is increased from 17 to 18.5 kN/m3 the GRf decrease by 7.58%, indicating that the brittleness increases with higher density. The τv for large size beam increases with density both in dry and saturated condition. The size effect method for evaluating material fracture properties proposed by Bazant (1984) is applied to cement stabilised rammed earth. By measuring the peak loads of 2D geometrically similar notched beam specimens of different sizes, nonlinear fracture parameters such as fracture energy (Gf ), fracture toughness (KIc), effective length of the fracture process zone (Cf ), brittleness number (β), characteristic length (l 0) and the critical crack tip opening displacement (CT ODc) are determined for both dry and saturated conditions. The crack growth resistance curves (R-curve) are also developed for dry and saturated specimens. In the size effect method, for both densities 18.5 and 17 kN/m3 the values of nonlinear fracture properties, namely G f , Cf , KIc, CT ODc and l 0 are lower for the saturated specimen compared to those of the dry specimen. In dry condition as the density is increased from 17 to 18.5 kN/m3 the Gf decreases to 13.54%, indicating that the brittleness increase with higher density. The areas under the load-displacement and load-CMOD curves are a measure of the fracture energy and these areas are low for saturated specimens. The crack growth resistance curves (R-curve) plotted using the size-effect law from peak loads are the measure of resistance against crack growth R. The value of R is high for dry specimen compared to that of the saturated specimens. During aggregate pullout or the opening of crack, the interlock or friction between the crack surfaces may cause the energy dissipation through friction and bridging across the crack. Therefore the wet friction in case of saturated specimen must be smaller resulting in more brittleness compared to the larger dry friction for dry specimen. In the present investigation the Digital Image Correlation (DIC) technique is used to study the FPZ properties in cement stabilised rammed earth. The MATLAB package written by Eberl et al. (2006) is suitably modified and used for image correlation to suit our requirements. CMOD measured using DIC technique is validated by comparison with the CMOD measured using clip gauge. The FPZ properties such as the development of FPZ and crack opening displacements at different loading points as well as the influence of notch/depth ratio on FPZ length (lFPZ ) are evaluated for both dry and saturated conditions. At peak load the lFPZ are about 0.315 and 0.137 times the un-cracked ligament length respectively for specimens tested under dry and saturated conditions. In dry and saturated states the FPZ length decreases as the ratio increases. Lower values of lFPZ in saturated specimen indicates that it is relatively more brittle compared to dry specimen.
9

Variability in Construction of Cement-Treated Base Layers: Probabilistic Analysis of Pavement Life Using Mechanistic-Empirical Approach

Rogers, Tyler J. 23 November 2009 (has links) (PDF)
The primary objective of this research was to quantify the improvement in service life of a flexible pavement constructed using full-depth reclamation (FDR) in conjunction with cement stabilization when specified reductions in the spatial variability of specific construction-related parameters are achieved. This study analyzed pavement data obtained through field and laboratory testing of a reconstruction project in northern Utah. Data analyses included multivariate regression, Monte Carlo simulation, and mechanistic-empirical analyses of a model pavement structure. The results of the research show a steadily increasing trend in 28-day unconfined compressive strength of the cement-treated base (CTB) layer with increasing reductions in variability for cement content, moisture content, and reclaimed asphalt pavement (RAP) content across each of five different reliability levels. The most significant increases in CTB strength occurred with reductions in the standard deviations of moisture content and RAP content. Decreasing the variability of cement content did not provide significant additional strength to the CTB layer. Therefore, when involved on FDR projects, members of the pavement industry should focus energy on reducing the variability of both moisture content and RAP content, which both significantly impact pavement life, to achieve high-quality, long-lasting pavements.
10

Factors Affecting the Strength of Road Base Stabilized with Cement Slurry or Dry Cement in Conjunction with Full-Depth Reclamation

Dixon, Paul A. 19 April 2011 (has links) (PDF)
Full-depth reclamation (FDR) in conjunction with cement stabilization is an established practice for rehabilitating deteriorating asphalt roads. Conventionally, FDR uses dry cement powder applied with a pneumatic spreader, creating undesirable fugitive cement dust. The cement dust poses a nuisance and, when inhaled, a health threat. Consequently, FDR in conjunction with conventional cement stabilization cannot generally be used in urban areas. To solve the problem of fugitive cement dust, the use of cement slurry, prepared by combining cement powder and water, has been proposed to allow cement stabilization to be utilized in urban areas. However, using cement slurry introduces several factors not associated with using dry cement that may affect road base strength, dry density (DD), and moisture content (MC). The objectives of this research were to 1) identify construction-related factors that influence the strength of road base treated with cement slurry in conjunction with FDR and quantify the effects of these factors and 2) compare the strength of road base treated with cement slurry with that of road base treated with dry cement. To achieve the research objectives, road base taken from an FDR project was subjected to extensive full-factorial laboratory testing. The 7-day unconfined compressive strength (UCS), DD, and MC were measured as dependent variables, while independent variables included cement content; slurry water batching temperature; cement slurry aging temperature; cement slurry aging time; presence of a set-retarding, water-reducing admixture; and aggregate-slurry mixing time. This research suggests that, when road base is stabilized with cement slurry in conjunction with FDR, the slurry water batching temperature; haul time; environmental temperature; and presence of a set-retarding, water-reducing admixture will not significantly affect the strength of CTB, provided that those factors fall within the limits explored in this research and are applied to a road base with similar properties. Cement content and cement-aggregate mixing time are positively correlated with the strength of CTB regardless of cement form. Additionally, using cement slurry will result in slightly lower strength values than using dry cement.

Page generated in 1.6756 seconds