• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • 1
  • Tagged with
  • 12
  • 12
  • 8
  • 7
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

History of exposure to precision demands alters the structuring of synergies in a precision finger force task: Implications for understanding resilience

Carver, Nicole 23 August 2022 (has links)
No description available.
2

The effects of fall history on kinematic synergy during walking. / 転倒歴が歩行中の運動学シナジーに与える影響

Yamagata, Momoko 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(人間健康科学) / 甲第21704号 / 人健博第70号 / 新制||人健||5(附属図書館) / 京都大学大学院医学研究科人間健康科学系専攻 / (主査)教授 青山 朋樹, 教授 黒木 裕士, 教授 松田 秀一 / 学位規則第4条第1項該当 / Doctor of Human Health Sciences / Kyoto University / DFAM
3

Analyse biomécanique du mouvement de préhension contraint et altéré : indices quantitatifs de la gestion de la redondance motrice

Jacquier-Bret, Julien 07 December 2009 (has links) (PDF)
Au travers de l'évaluation d'indices quantitatifs, ce travail se focalise sur l'analyse biomécanique de la redondance et des coordinations motrices du membre supérieur lors de la réalisation du mouvement de préhension. En nous basant sur la théorie de « l'uncontrolled manifold », nous abordons, d'une part, un aspect particulier de la notion de synergie qui est relatif à la covariation des paramètres d'état du système afin de stabiliser une variable de performance. En effet, la thématique de la redondance motrice qui est une des caractéristiques principale du système musculo-squelettique a été récemment reformulée. Dans ce cadre, il est postulé que les degrés de liberté ne sont jamais éliminés comme le suggère la théorie proposée par Bernstein mais combinés afin d'assurer performance et flexibilité. D'autre part, nous utilisons un indice issu de la robotique, la manipulabilité permettant d'évaluer les capacités de déplacement du poignet au cours de ce mouvement de saisie. L'objectif de ce travail consiste à appliquer ces deux analyses à des mouvements contraints ou altérés afin d'identifier les modifications de la coordination motrice par rapport à des conditions contrôles. Dans cette optique, la première analyse consiste à évaluer l'effet d'une contrainte spatiale matérialisée par un obstacle lors de la phase d'approche d'un mouvement de préhension par une mesure des paramètres cinématiques du membre supérieur. La seconde étude vise à identifier la coordination motrice du membre supérieur de sujets atteints d'une lésion médullaire et souffrants de tétraplégie par une analyse combinée des paramètres électromyographiques (EMG) de certains muscles impliqués et des paramètres cinématiques. Pour cela nous avons mis en place deux protocoles expérimentaux au cours desquels les angles articulaires du membre supérieur ainsi que le signal EMG ont été évalués par des moyens adaptés. En présence d'un obstacle, nos résultats montrent de manière classique que la position du poignet est stabilisée au travers d'une synergie articulaire. De plus, il semble que la présence d'une contrainte spatiale renforce les synergies pour stabiliser la trajectoire du coude dans la seconde partie du mouvement correspondant au franchissement de l'obstacle. Ce renforcement se caractérise par une utilisation accrue de configurations articulaires équivalentes. Ce résultat suggère que l'augmentation de la flexibilité des configurations articulaires serait un mécanisme par lequel le système nerveux central pourrait prendre en compte la présence d'une contrainte spatiale. Parallèlement, la présence de l'obstacle entraine des modifications de la manipulabilité du poignet. Pour les sujets souffrants de tétraplégie, l'analyse EMG a montré une compensation de la faiblesse ou la paralysie de certains muscles, le triceps brachial notamment, par une augmentation de l'activité relative des muscles de l'épaule. De plus, ces sujets présentent une décomposition de la variance des angles articulaires similaire à celle du groupe contrôle suggérant que, malgré la présence d'une déficience motrice, la flexibilité des configurations articulaire au cours de l'exécution du mouvement est toujours présente ou a été récupérée. De même pour la manipulabilité, les patients présentent de fortes similitudes avec les sujets valides avec, dans certains cas, des valeurs de manipulabilité du poignet supérieures. Ces résultats nous amènent à penser que l'étude des synergies au travers des indices proposés pourrait constituer un outil intéressant afin d'étudier l'impact d'une contrainte et d'une déficience motrice sur les paramètres biomécaniques du mouvement. Les présents travaux ouvrent des voies intéressantes pour des applications dans le domaine de la simulation du mouvement et de l'évaluation fonctionnelle de la coordination de sujets déficients moteurs en vue d'évaluer et améliorer la rééducation par l'apport d'informations quantitatives aux cliniciens.
4

Adaptation of locomotor control in able and impaired human walking

Toney, Megan 21 September 2015 (has links)
Extensive research has documented the stereotypical kinematic and kinetic patterns in healthy human walking, but we have a limited understanding of the neuromechanical control principles that contribute to their execution. Furthermore, the strategies used to adapt human walking to morphological or environmental constraints are poorly understood. After a traumatic injury, like amputation, regaining independent mobility is a primary goal of rehabilitation. Without a clear understanding of the neuromechanical principles governing locomotion, monitoring and quantitatively improving gait rehabilitation outcomes is challenging. The purpose of this doctoral work was to identify controlled variables in able and impaired human walking and to compare the control strategies used to adapt to a novel walking environment both with and without amputation. I apply an uncontrolled manifold (UCM) analysis to test whether likely goal variables of human walking are selectively stabilized through step-to-step variability structure. I found that both able-bodied subjects and subjects with an amputation maintain consistent whole body dynamics and leg power production by exploiting inherent motor abundance. Consistent leg power production is accomplished primarily through step-to-step leg force corrections that are driven by variable timing of ankle torque production. Covariance between ankle and knee torques enable robust motor control in able-bodied individuals, but this stabilizing mechanism is absent in individuals with a transtibial amputation. This coordinated joint torque control also appears to assist able-bodied short-term adaptation, invoked by split-belt treadmill walking. However, loss of ankle motor control and distal sensory feedback due to amputation appears to limit reactive, feedback driven adaptation patterns in subjects with an amputation. Ultimately, this work highlights the role of intact distal sensorimotor function in locomotor control and adaptation. The major findings I present have substantial implications for gait rehabilitation and prosthetic design.
5

Adaptations to postural and manual control during tool use

Joshua James Liddy (8803229) 07 May 2020 (has links)
<p>Tool use is an important area of research in psychology, neurophysiology, and motor behavior because it provides insights into the organization of perception, cognition, and action. Tool use research has traditionally focused on the neural structures or cognitive processes that contribute to body-tool integration, while there has been comparatively little interest in motor control. When tool use actions are studied, adaptations have mainly been examined at the level of manual control, while postural control and multi-segment coordination have received less attention. Examining these components of behavior in the context of tool use is vital for developing a better understanding of how humans integrate tools into goal-directed actions.</p><p>The goals of this dissertation were to 1) characterize adaptations to postural control over time when performing a manual task with a tool under different levels of postural constraint and determine their relation to manual task performance, 2) examine postural-manual coupling under different levels of postural constraint during tool use, and 3) determine how multi-segment coordination supports postural stability and suprapostural task performance under different levels of postural constraint during tool use. To address these questions, we adopted a sensorimotor adaptation paradigm to examine postural-manual control and multi-segment coordination before, during, and after an extended bout of tool use.</p>Tool-use adaptations were found to extend beyond the end-effector. Postural control played a crucial role in facilitating improvements in the manual control of tools. Placing constraints on posture interfered with these adaptations, disrupting the coordination of postural-manual behaviors during tool use. However, multi-segment coordination was modified to overcome this challenge and facilitate postural stability and manual performance. These results demonstrate that healthy young adults are capable of flexibly recruiting and exploiting available degrees of freedom in a task-dependent manner the potential challenges associated with integrating tools into movements. This dissertation provides preliminary support for the importance of considering postural control in tool use actions and highlights the utility of examining interactions across multiple levels of motor behavior—postural control, manual control, postural-manual coupling, and multi-segment coordination—to elucidate how tools are integrated into complex, goal-directed behaviors.
6

ADAPTATIONS TO THE FOOT PLACEMENT STRATEGY WHILE  WALKING THROUGH CLUTTERED ENVIRONMENTS

Ashwini Kulkarni (11984720) 07 August 2023 (has links)
<p> A key mechanism to maintain balance during walking is the foot placement strategy,  where the person steps in the direction of an impending fall. On a clear walkway, the foot  placement strategy translates to maintaining a consistent relationship between the center of mass  state and the base of support (a body-centric constraint on foot placement), which is reflected in  a consistent step length. However, to safely navigate in the community, foot placement must  maintain certain spatial relations with environmental features as well (environmental constraints on foot placement). For stepping over obstacles, the environmental constraint takes the form of  targeting. That is, the feet must be placed at precise locations relative to the obstacle to minimize  the likelihood of tripping.  My dissertation focused on proactive adaptations to foot placements while navigating  cluttered environments. I developed the interstep covariation (ISC) index that quantifies the covariation between consecutive foot placements relative to stationary, visible environmental  features (an obstacle and a visual target). The across-step (or group) changes in this index  indicate how the two constraints (body-centric and environmental) on foot placement are  managed during adaptive gait tasks. I quantified how the ISC index changed (1) across steps  while approaching and crossing an obstacle, (2) due to healthy aging and (3) when the proximity  of two environmental features was systematically altered. Specifically, in Study 1, the ISC index  was quantified for the obstacle crossing step for healthy younger and older adults. In Study 2, proactive changes in the ISC index as healthy young adults approached and crossed an obstacle were characterized. In Study 3, the changes in the dynamics of the across-step ISC index due to  an additional visual stepping target in the approach to the obstacle were identified.  I found that there exists a covariance strategy that healthy adults use to navigate the  environment safely and successfully. First, I found that individuals prioritize the environmental  constraint at the expense of the body-centric constraint when the environment poses a larger risk  to balance (the obstacle), or to satisfy a specified constraint (stepping on a visual target). Second,  I found that the shift in prioritization is proactive, i.e., it occurs while approaching an obstacle.  The strategy to shift priorities is influenced by age (Study 1), environmental features (Study 2  and Study 3), and the proximity of two environmental features (Study 3). These studies add to  the current understanding of foot placement control by demonstrating how this well-known and 15 fundamental strategy to maintain balance while walking is systematically influenced by the  environment and task constraints. These findings can be further extended to study proactive and  reactive adaptations during walking in different populations.   </p>
7

Uncontrolled manifold based controller for lower-body exoskeletons supporting sit-to-stand transitions

Patil, Gaurav 01 October 2019 (has links)
No description available.
8

SYNERGIES IN WITHIN- AND BETWEEN-PERSON INTERLIMB RHYTHMIC COORDINATION: EFFECTS OF COORDINATION STABILITY AND ENVIRONMENTAL ANCHORING

BLACK, DAVID PAUL January 2005 (has links)
No description available.
9

Stability control during the double support phase of adaptive locomotion: Effect of age and environmental demands

Chuyi Cui (13107099) 20 July 2022 (has links)
<p>  </p> <p>Falls mostly occur when people are walking. Investigations of control of gait stability have focused primarily on the single stance phase. My dissertation focused on the double support phase of gait because (1) responses to perturbations occur during the double support (2) the portion of the gait cycle spent in double support is increased with old age, and, more importantly, (3) since both feet can push off the ground simultaneously, there are more kinetic degrees of freedom (DoF) and therefore greater control authority over body motion during this phase. However, how these kinetic DoFs are coordinated during the double support phase is not fully understood. Thus, the goal of this dissertation was to identify the inter-leg coordination to stabilize whole-body motion and quantify how the inter-leg coordination is affected by intrinsic and extrinsic factors. Specifically, Study 1 focused on healthy aging (an intrinsic factor) and varying task demands (an extrinsic factor that changed while curb ascent versus curb descent). Study 2 investigated another extrinsic factor of future uncertain environmental demands (fixed versus uncertain foot targeting demand for the step after descending a curb). Using the uncontrolled manifold analysis, I identified ground reaction variable (GRV) synergies, i.e., synergistic covariations between the ground reaction forces and moments under the two feet that stabilize whole-body linear and angular motions. Furthermore, I found that GRV synergies were modulated by extrinsic factors: GRV synergies were sensitive to current fixed environmental demands (Study 1), whereas they were robust to future environmental demands on foot placement (Study 2). Lastly, I found that GRV synergies were not changed by the intrinsic factor of age, despite the physiological declines with aging (Study 1). The absence of an age effect on GRV synergies indicates that older adults have the preserved ability to exploit the control authority during the double support phase to maintain stability while negotiating a curb. The work extends the current body of literature on gait stability mechanisms and improves our understanding of changes in stability control as a function of different environmental demands.</p>
10

Force control during human bouncing gaits

Yen, Jasper Tong-Biau 01 April 2011 (has links)
Every movement has a goal. For reaching, the goal is to move the hand to a specific location. For locomotion, however, goals for each step cycle are unclear and veiled by the automatic nature of lower limb control. What mechanical variables does the nervous system "care" about during locomotion? Abundant evidence from the biomechanics literature suggests that the force generated on the ground, or endpoint force, is an important task variable during hopping and running. Hopping and running are called bouncing gaits for the reason that the endpoint force trajectory is like that of bouncing on a pogo stick. In this work, I captured kinematics and kinetics of human bouncing gaits, and tested whether structure in the inherent step-to-step variability is consistent with control of endpoint force. I found that joint torques covary from step to step to stabilize only peak force. When two limbs are used to generate force on the ground at the same time, individual forces of the limbs are not stabilized, but the total peak force is stabilized. Moreover, passive dynamics may be exploited during forward progression. These results suggest that the number of kinetic goals is minimal, and this simple control scheme involves goals for discrete times during the gait cycle. Uncovering biomechanical goals of locomotion provides a functional context for understanding how complex joints, muscles, and neural circuits are coordinated.

Page generated in 0.0629 seconds