1 |
Développement de vernis d'isolation électrique présentant des propriétés thermomécaniques améliorées à 180°C / Development of electrical insulating varnishes with improved thermomechanical propertiesHeib, Bertrand 11 January 2011 (has links)
Cette thèse porte sur le développement de résines polyesterimides insaturés pour des applications de type vernis d'imprégnation pour isolation électrique. Il s’agit de matériaux polymères thermodurcissables, qui assurent la double fonction d'isolant et d'agent de cohésion du système isolé. Ils se différencient en classes thermiques, qui définissent leur température maximale d'utilisation. Dans le cadre de cette étude, nous cherchons à développer des produits de classe thermique supérieure ou égale à 180°C. Une première partie de cette étude a porté sur l'amélioration de deux produits commerciaux à base de polyesters insaturés à fonctions terminales imides. Notre attention s'est portée sur la modification de leur structure chimique, afin de voir comment les différents précurseurs utilisés influencent les propriétés des résines. Une seconde partie a consisté à développer de nouvelles résines à base de polyesterimides insaturés, à partir de trois types de précurseurs imides difonctionnels. / This thesis focuses on the development of unsaturated polyesterimide resins as impregnating varnishes for electrical insulation applications. These thermosetting polymer materials provide the dual function of insulating and cohesion agent of the isolated system. They differ in thermal classes, which define their maximum operating temperature. In this study, we tried to develop products with a thermal class above or equal to 180°C. The first part of this study focused on the improvement of two commercial products based on imide-endcapped unsaturated polyester. Our attention turned to the modification of their chemical structure, to see how the different precursors used affect the thermal and mechanical properties of resins. A second part was to develop new unsaturated polyesterimide resins, using three types of difunctional imide precursors.
|
2 |
Compréhension et optimisation de la dispersion du carbonate de calcium dans une résine polyester insaturée / Comprehension and optimization of a calcium carbonate dispersion in an unsatured polyester resinKiehl, Julien 19 September 2012 (has links)
L’objectif de ce travail est d’adapter une formulation dispersante mise au point par la société Mäder à la dispersion de carbonate de calcium (CaCO3) dans une résine polyester insaturée (UP). Le carbonate de calcium est utilisé en tant que charge dans les matériaux composites à matrice thermodurcissable et en particulier dans les SMC (Sheet Molding Compound). Le rôle de cette formulation est de diminuer les viscosités de résines UP fortement chargées tout en conservant voire en améliorant les propriétés mécaniques des composites formés par un renforcement de l’interface charge / matrice. Trois grands axes ont été développés au cours de ce travail : - le comportement rhéologique d’un mélange CaCO3/résine UP a été déterminé et la formulation dispersante a été optimisée ; - la nature des interactions entre les différents constituants de la formulation dispersante et la surface du CaCO3 a été mise en évidence ; - de nouveaux polymères permettant une dispersion plus efficace de la charge dans la résine ont été synthétisés. Le mélange CaCO3 / résine UP présente un comportement rhéologique complexe. L’optimisation de la formulation dispersante a permis d’augmenter de plusieurs pourcents le taux de charge tout en conservant des viscosités inférieures à celle autorisée par le procédé industriel. L’étude des interactions des constituants de la formulation avec le carbonate de calcium a permis de déterminer les fonctions les plus réactives et de comprendre leur interaction avec la surface de la charge. La synthèse de nouveaux dispersants a également été effectuée. Ces derniers ont ensuite été testés dans l’application et ont montré une efficacité à disperser le CaCO3 dans la résine UP. / The aim of this study is to adapt a dispersive formulation developed by the Mäder group to the dispersion of calcium carbonate (CaCO3) in an unsaturated polyester resin (UP). The CaCO3 is commonly used as filler in the domain of composites especially for Sheet Molding Compound (SMC). This dispersive formulation is able to decrease the viscosity of UP resin containing a high amount of filler. In addition, the mechanical properties of composites could be increased by reinforcing the filler / matrix interface. Three main ways have been studied: - characterization of the rheological behavior of CaCO3 / polyester blends and optimization of the dispersive formulation ; - determination of the interactions between the dispersive formulation components and the CaCO3 surface ; - synthesis of new polymers in order to improve the CaCO3 dispersion in an organic matrix. A complex rheological behavior has been observed for CaCO3 / polyester blends. The dispersive formulation improvement led to an increasing of the filler percentage by keeping the viscosity under the industrial limit. The most reactive functions with the CaCO3 surface have been identified by studying the interactions between the dispersive formulation components and the CaCO3 surface. New dispersing agents have been synthesized. Their efficiency has been demonstrated for the dispersion of CaCO3 in a UP resin.
|
3 |
Untersuchung und Zähmodifizierung neuer hochtemperaturbeständiger ungesättigter Polyesterharze und ihrer DuromereStuck, Moritz 25 November 2019 (has links)
Zielsetzung dieser Arbeit war die Zähmodifizierung eines neuen besonders hochtemperaturbeständigen ungesättigten Polyesters, nachfolgend Referenz genannt.
Im Rahmen dieser Arbeit wurden verschiedene konzeptionelle Ansätze verfolgt, um die Harz- und Duromer-Eigenschaften von hochtemperaturbeständigen ungesättigten Polyesterharzen (Unsaturated Polyester Resin, UPR) zu modifizieren und zu verstehen.:1. Einleitung
2. Motivation
3. Theoretischer Teil
4. Charakterisierungsmethoden
5. Ergebnisse und Diskussion
6. Zusammenfassung
7. Experimenteller Teil
8. Literaturverzeichnis
9. Anhang
10. Versicherung
|
4 |
IMPROVING WORKER SAFETY AND ENVIRONMENTAL PROTECTION BY UNDERSTANDING CHEMICAL EMISSIONS FROM PLASTIC COMPOSITES DURING MANUFACTURE AND USESeyedeh-Mahboobeh Teimouri-Sendesi (8755941) 21 June 2022 (has links)
<p>This dissertation focused on cured-in-place-pipe (CIPP) technology, which is being used to repair sewer pipes across the globe. The CIPP process involves the manufacture of a new fiber-reinforced composite plastic pipe inside an existing damaged pipe. By 2022, the global CIPP market will exceed $2.5 billion and constitute 40% of the U.S. pipe rehabilitation market. In recent years, concerns about the type, magnitude, and toxicity of chemical air emissions associated with CIPP installations have markedly increased. CIPP installations in Asia, Europe, Oceania, and North America have been associated with indoor and ambient air contamination incidents, afflicted schools, daycare centers, homes, and offices and prompted building evacuations. This research program was designed to better understand chemical release into the air during CIPP composite manufacture and the human health risks. Principles and techniques from the environmental engineering, air quality, material science, and risk analysis were applied. This dissertation contains three chapters and each chapter is a stand-alone manuscript, with the first chapter already having been published.</p><p>Chapter 1 involved the characterization of chemical emissions for steam-cured CIPP installations in Indiana (IN, sanitary sewer) and California (CA, storm sewer). It was discovered that a complex multiphase mixture of organic vapor, water vapor, and particulate (condensable vapor and partially cured resin) was emitted. Chemicals captured included a variety of hazardous air pollutants, carcinogens, endocrine disrupting compounds, and other chemicals with little toxicity data. The materials captured in California during 4 CIPP installations, when normalized against styrene concentration, exhibited different toxicity towards mouse cells. This toxicity indicated that non-styrene compounds were probably responsible for toxicity. Testing revealed significant and previously unreported worker and public safety chemical risks existed with CIPP installations.</p><p>Chapter 2 describes experiments conducted to determine which CIPP manufacturing conditions (i.e. curing pressure, temperature, time and ventilation) influenced chemical air emissions during and after composite manufacture. During thermal manufacture, approximately 8.87 wt% volatile organic compounds (VOC) was released into the air at standard pressure. For the CIPP styrene-based resin examined, chemical volatilization during manufacture was influenced by pressure, but temperature and heating time did not influence the composition of chemical residual inside the new composite. All cured composites, regardless of temperature or heating time, contained approximately 3 wt% VOC. No statistical difference was found for either: (1) VOC loading across cured composites or (2) styrene emission into the air across cured composites despite different curing temperature and heating times. Styrene was the most abundant compound detected in the composite and in air. High styrene air concentration signals inhibited the author’s ability to determine if other non-styrene compounds were emitted into the air. Short-term ventilation (2 hr) of the new composite reduced styrene air concentration to near zero in 10 min, but styrene levels rebounded when ventilation was halted. Due to the high styrene loading in the cured composite, it is expected that ventilation will only temporarily reduce VOC air levels in pipes, manholes, and other affected spaces.</p><p>Chapter 3 includes inhalation health risk assessment due to chemical emission from CIPPs during manufacture and use. Publicly available worksite data for ultraviolet (UV)-light and steam-CIPP installations were utilized and Monte Carlo simulation was applied. Data-gaps were also identified. Health risks associated with newly manufactured (post-cured) chemical emission from lab scale CIPPs were also evaluated. For CIPP resins and post-cured CIPPs 31 chemicals have been quantified among which many are unique volatile organic chemicals VOCs, but only 8 air testing studies were found. At a steam-CIPP worksite, VOCs were found in a condensed multiphase mixture discharged into air, 4 VOCs were detected in the vapor phase, while only styrene vapor phase results could be used for risk assessment. Worksite styrene levels (1,825 ppm<sub>v</sub>, 1,070 ppm<sub>v</sub>, 220-270 ppm<sub>v</sub>, 140 ppm<sub>v</sub>) have been reported indicating a health risk can exist. Monte Carlo simulation using literature data revealed that for the single UV-CIPP and single steam-CIPP study negligible styrene HQs were found, while unacceptable styrene LECRs% > 10<sup>−4</sup> (i.e. 37-38%) were obtained. Monte Carlo simulation on laboratory data showed that post-cured emissions from the composite cured longer increased the unacceptable styrene LECR (from 17.86% to 21.12%) and HQ (0.95% to 8.04%). Whereas curing the composite at greater temperature reduced the styrene LECR and HQ to 0.89%. and 0, respectively. Ventilation also diminished the acceptable LECR% in all composites but did not reduce the carcinogenic health risk to an acceptable level. Health risk can exist as evidenced by limited air testing data. More studies are needed to examine inhalation health risks associated with the CIPP manufacturing process and newly manufactured plastics.</p>
|
5 |
Integrated analysis of liquid composite molding (LCM) processesXu, Liqun 12 October 2004 (has links)
No description available.
|
6 |
Nanostructuration de résines polyester insaturé par des copolymères à blocs : application aux composites SMC et BMC / Nanostructuration of unsaturated polyester resins by block copolymers : application to SMC and BMC compositesLamy, Yoann 06 September 2012 (has links)
On s’intéresse dans cette étude au potentiel de copolymères à blocs (BCP) de types PBA-b-P(MMA-co-DMA) et PBA-b-P(BA-co-DMA) en tant qu’additifs multifonctionnels nanostructurant la matrice thermodurcissable polyester insaturé de composites SMC et BMC. La nanostructuration de la résine polyester insaturé (UPR) est assurée par la ségrégation du bloc élastomère poly(acrylate de butyle), ainsi que par la miscibilité du deuxième bloc dans le réseau grâce à la bonne compatibilité des motifs diméthylacrylamide (auto-assemblage). Ces BCP sont tout d’abord étudiés en tant qu’agents renforçants et anti-retrait dans les composites SMC et BMC, en étant substitués et comparés aux additifs anti-retrait conventionnels PVAc et P(MMA-co-S) incorporés traditionnellement afin de compenser le retrait de la résine polyester. Ces additifs nanostructurants sont ensuite évalués en tant qu’agents de mûrissement des compounds SMC. La nanostructuration des BCP dans la résine UP réactive pouvant entrainer une importante augmentation de la viscosité (formation d’un gel), ces additifs pourraient peut-être constituer des agents de mûrissement plus efficaces que l’oxyde de magnésium couramment utilisé à cet effet. Une étude des matrices [UPR + BCP, UPR + PVAc et UPR + P(MMA-co-S)] est réalisée dans un premier temps, les composites BMC et SMC chargés par du carbonate de calcium et renforcés par des fibres de verre étant étudiés par la suite. En absence de charges et de fibres de verre (matrice seule), la nanostructuration est moins efficace que la macroséparation de phase des additifs conventionnels PVAc et P(MMA-co-S) pour compenser le retrait du réseau polyester. Dans un composite en revanche, la nanostructuration conduit à une compensation du retrait intermédiaire entre celles du P(MMA-co-S) et du PVAc. Au niveau de la matrice seule, la nanostructuration permet d’éviter une diminution conséquente de l’énergie de rupture du réseau polyester et permet même dans certains cas une amélioration significative de cette dernière, alors que les additifs conventionnels engendrent un effondrement de cette propriété. Cette différence est cependant beaucoup moins visible dans le cas des composites, les charges entrainant une fissuration prématurée de la matrice. Un composite nanostructuré peut tout de même présenter un renforcement significatif par rapport aux composites conventionnels lorsqu’il contient des nanovides compensateurs de retrait de tailles conséquentes qui améliorent la ténacité du matériau. En ce qui concerne le mûrissement d’un compound SMC par nanostructuration au cours du refroidissement (passage de la transition ordre-désordre), si l’augmentation de la viscosité d’un système réactif UPR + BCP semble suffisamment importante et abrupte, elle est cependant insuffisante en présence des charges ou alors intervient à une température trop faible en raison de l’influence de ces dernières sur la nanostructuration. / The aim of this study is to evaluate the potential of PBA-b-P(MMA-co-DMA) and PBA-b-P(BA-co-DMA) block copolymers (BCP) as multifunctional additives nanostructuring the unsaturated polyester thermosetting matrix of SMC and BMC composites. The nanostructuration of the unsaturated polyester resin (UPR) is ensured by the segregation of the poly(butyl acrylate) elastomeric block, and by the miscibility of the second block in the thermoset thanks to the good compatibility of dimethylacrylamide units (self-assembly). These BCP are first studied as reinforcing and anti-shrinkage agents in SMC and BMC composites, as compared to conventional low profile additives PVAc and P(MMA-co-S) traditionally blended to compensate the polyester resin shrinkage. These nanostructuring additives are then studied as thickening agents in SMC compounds. As the nanostructuration of BCP in the UP reactive resin can lead to a high viscosity increase (gel formation), BCP might provide a more efficient thickening than the conventional additive magnesium oxide. Matrices are studied first [UPR + BCP, UPR + PVAc and UPR + P(MMA-co-S)], BMC and SMC composites filled with calcium carbonate and reinforced by chopped glass fibres being then considered. In the absence of fillers and fibres (neat matrix), the nanostructuration is less efficient than the macrophase separation of PVAc and P(MMA-co-S) to compensate the polyester resin shrinkage. However, in a composite, the nanostructuration leads to an intermediate shrinkage compensation between those of P(MMA-co-S) and PVAc. In the neat matrix, the nanostructuration avoids a substantial decrease of polyester network toughness and can even lead sometimes to a significant reinforcement, whereas conventional additives decrease tremendously this property. However, this difference is not observed in composites, fillers giving rise to an early cracking of the matrix. A nanostructured composite can still present a significant reinforcement compared to conventional composites when it contains large nanovoids (compensating shrinkage) which improve the fracture toughness of the material. As regards the thickening of an SMC compound by nanostructuration during cooling (crossing of the order-disorder transition), the viscosity increase of a UPR + BCP reactive system seems important and sharp enough, but in the presence of fillers the viscosity increase is not sufficient or the order-disorder transition temperature is too low because of the influence of fillers on the nanostructuration.
|
Page generated in 0.1319 seconds