• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 108
  • 33
  • 24
  • 21
  • 5
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 277
  • 53
  • 47
  • 43
  • 41
  • 36
  • 33
  • 30
  • 30
  • 28
  • 27
  • 27
  • 26
  • 26
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

An artefact to analyse unstructured document data stores / by André Romeo Botes

Botes, André Romeo January 2014 (has links)
Structured data stores have been the dominating technologies for the past few decades. Although dominating, structured data stores lack the functionality to handle the ‘Big Data’ phenomenon. A new technology has recently emerged which stores unstructured data and can handle the ‘Big Data’ phenomenon. This study describes the development of an artefact to aid in the analysis of NoSQL document data stores in terms of relational database model constructs. Design science research (DSR) is the methodology implemented in the study and it is used to assist in the understanding, design and development of the problem, artefact and solution. This study explores the existing literature on DSR, in addition to structured and unstructured data stores. The literature review formulates the descriptive and prescriptive knowledge used in the development of the artefact. The artefact is developed using a series of six activities derived from two DSR approaches. The problem domain is derived from the existing literature and a real application environment (RAE). The reviewed literature provided a general problem statement. A representative from NFM (the RAE) is interviewed for a situation analysis providing a specific problem statement. An objective is formulated for the development of the artefact and suggestions are made to address the problem domain, assisting the artefact’s objective. The artefact is designed and developed using the descriptive knowledge of structured and unstructured data stores, combined with prescriptive knowledge of algorithms, pseudo code, continuous design and object-oriented design. The artefact evolves through multiple design cycles into a final product that analyses document data stores in terms of relational database model constructs. The artefact is evaluated for acceptability and utility. This provides credibility and rigour to the research in the DSR paradigm. Acceptability is demonstrated through simulation and the utility is evaluated using a real application environment (RAE). A representative from NFM is interviewed for the evaluation of the artefact. Finally, the study is communicated by describing its findings, summarising the artefact and looking into future possibilities for research and application. / MSc (Computer Science), North-West University, Vaal Triangle Campus, 2014
42

Shape Modeling of Plant Leaves with Unstructured Meshes

Hong, Sung Min January 2005 (has links)
The plant leaf is one of the most challenging natural objects to be realistically depicted by computer graphics due to its complex morphological and optical characteristics. Although many studies have been done on plant modeling, previous research on leaf modeling required for close-up realistic plant images is very rare. In this thesis, a novel method for modeling of the leaf shape based on the leaf venation is presented. As the first step of the method, the leaf domain is defined by the enclosure of the leaf boundary. Second, the leaf venation is interactively modeled as a hierarchical skeleton based on the actual leaf image. Third, the leaf domain is triangulated with the skeleton as constraints. The skeleton is articulated with nodes on the skeleton. Fourth, the skeleton is interactively transformed to a specific shape. A user can manipulate the skeleton using two methods which are complementary to each other: one controls individual joints on the skeleton while the other controls the skeleton through an intermediate spline curve. Finally, the leaf blade shape is deformed to conform to the skeleton by interpolation. An interactive modeler was developed to help a user to model a leaf shape interactively and several leaves were modeled by the interactive modeler. The ray-traced rendering images demonstrate that the proposed method is effective in the leaf shape modeling.
43

A mesh transparent numerical method for large-eddy simulation of compressible turbulent flows

Tristanto, Indi Himawan January 2004 (has links)
A Large Eddy-Simulation code, based on a mesh transparent algorithm, for hybrid unstructured meshes is presented to deal with complex geometries that are often found in engineering flow problems. While tetrahedral elements are very effective in dealing with complex geometry, excessive numerical diffusion often affects results. Thus, prismatic or hexahedral elements are preferable in regions where turbulence structures are important. A second order reconstruction methodology is used since an investigation of a higher order method based upon Lele's compact scheme has shown this to be impractical on general unstructured meshes. The convective fluxes are treated with the Roe scheme that has been modified by introducing a variable scaling to the dissipation matrix to obtain a nearly second order accurate centred scheme in statistically smooth flow, whilst retaining the high resolution TVD behaviour across a shock discontinuity. The code has been parallelised using MPI to ensure portability. The base numerical scheme has been validated for steady flow computations over complex geometries using inviscid and RANS forms of the governing equations. The extension of the numerical scheme to unsteady turbulent flows and the complete LES code have been validated for the interaction of a shock with a laminar mixing layer, a Mach 0.9 turbulent round jet and a fully developed turbulent pipe flow. The mixing layer and round jet computations indicate that, for similar mesh resolution of the shear layer, the present code exhibits results comparable to previously published work using a higher order scheme on a structured mesh. The unstructured meshes have a significantly smaller total number of nodes since tetrahedral elements are used to fill to the far field region. The pipe flow results show that the present code is capable of producing the correct flow features. Finally, the code has been applied to the LES computation of the impingement of a highly under-expanded jet that produces plate shock oscillation. Comparison with other workers' experiments indicates good qualitative agreement for the major features of the flow. However, in this preliminary computation the computed frequency is somewhat lower than that of experimental measurements.
44

Mathematical modelling of shallow water flows with application to Moreton Bay, Brisbane

Bailey, Clare L. January 2010 (has links)
A finite volume, shock-capturing scheme is used to solve the shallow water equations on unstructured triangular meshes. The conditions are characterised by: slow flow velocities (up to 1m/s), long time scale (around 10 days), and large domains (50-100km across). Systematic verification is carried out by comparing numerical with analytical results, and by comparing parameter variation in the numerical scheme with perturbation analysis, and good agreement is found. It is the first time a shock-capturing scheme has been applied to slow flows in Moreton Bay. The scheme is used to simulate transport of a pollutant in Moreton Bay, to the east of the city of Brisbane, Australia. Tidal effects are simulated using a sinusoidal time-dependent boundary condition. An advection equation is solved to model the path of a contaminant that is released in the bay, and the effect of tide and wind on the contaminant is studied. Calibration is done by comparing numerical results with measurements made at a study site in Moreton Bay. It is found that variation in the wind speed and bed friction coefficients changes the solution in the way predicted by the asymptotics. These results vary according to the shape of the bathymetry of the domain: in shallower areas, flow is more subject to shear and hence changes in wind speed or bed friction had a greater effect in adding energy to the system. The results also show that the time-dependent boundary condition reproduces the tidal effects that are found on the Queensland coast, i.e. semi-diurnal with amplitude of about 1 metre, to a reasonable degree. It is also found that the simulated path of a pollutant agrees with field measurements. The computer model means different wind speeds and directions can be tested which allows management decisions to be made about which conditions have the least damaging effect on the area.
45

The Effects of a Perceptual-Motor Training Program on the Performance of Kindergarten Pupils on Metropolitan Readiness Tests

Rutherford, William L. 08 1900 (has links)
The problem of this study was to determine the effect of a modified form of Kephart's perceptual-motor training program on the performance of kindergarten pupils on Metropolitan Readiness Tests. This program was made up of certain perceptual-motor activities which were utilized during the regular school play periods.
46

A Semi-Supervised Information Extraction Framework for Large Redundant Corpora

Normand, Eric 19 December 2008 (has links)
The vast majority of text freely available on the Internet is not available in a form that computers can understand. There have been numerous approaches to automatically extract information from human- readable sources. The most successful attempts rely on vast training sets of data. Others have succeeded in extracting restricted subsets of the available information. These approaches have limited use and require domain knowledge to be coded into the application. The current thesis proposes a novel framework for Information Extraction. From large sets of documents, the system develops statistical models of the data the user wishes to query which generally avoid the lim- itations and complexity of most Information Extractions systems. The framework uses a semi-supervised approach to minimize human input. It also eliminates the need for external Named Entity Recognition systems by relying on freely available databases. The final result is a query-answering system which extracts information from large corpora with a high degree of accuracy.
47

Algorithmes sur GPU de visualisation et de calcul pour des maillages non-structurés / Algorithms on the GPU for visualization and computations on unstructured grids

Buatois, Luc 16 May 2008 (has links)
De nombreux domaines utilisent à présent de nouveaux types de grilles composées de polyèdres arbitraires, autrement dit des grilles fortement non-structurées. La problématique de cette thèse concerne la définition de nouveaux outils de visualisation et de calcul sur de telles grilles. Pour la visualisation, cela pose à la fois le problème du stockage et de l'adaptativité des algorithmes à une géométrie et une topologie variables. Pour le calcul, cela pose le problème de la résolution de grands systèmes linéaires creux non-structurés. Pour aborder ces problèmes, l'augmentation incessante de la puissance de calcul parallèle des processeurs graphiques nous fournit de nouveaux outils. Toutefois, l'utilisation de ces GPU nécessite de définir de nouveaux algorithmes adaptés aux modèles de programmation parallèle qui leur sont spécifiques. Nos contributions sont les suivantes : (1) Une méthode générique de visualisation tirant partie de la puissance de calcul des GPU pour extraire des isosurfaces à partir de grandes grilles fortement non-structurées. (2) Une méthode de classification de cellules qui permet d'accélérer l'extraction d'isosurfaces grâce à une pré-sélection des seules cellules intersectées. (3) Un algorithme d'interpolation temporelle d'isosurfaces. Celui-ci permet de visualiser de manière continue dans le temps l'évolution d'isosurfaces. (4) Un algorithme massivement parallèle de résolution de grands systèmes linéaires non-structurés creux sur le GPU. L'originalité de celui-ci concerne son adaptation à des matrices de motif arbitraire, ce qui le rend applicable à n'importe quel système creux, dont ceux issus de maillages fortement non-structurés / This thesis proposes new tools for visualization and computation on strongly unstructured grids. Visualization of such grids that have variable geometry and topology, poses the problem of how to store data and how algorithms could handle such variability. Doing computations on such grids poses the problem of solving large sparse unstructured linear systems. The ever-growing parallel power of GPUs makes them more and more valuable for handling theses tasks. However, using GPUs calls for defining new algorithms highly adapted to their specific programming model. Most recent algorithms for Geometry Processing or Computational Fluid Dynamics (CFD) are using new types of grids made of arbitrary polyhedra, in other words strongly unstructured grids. In case of CFD simulations, these grids can be mapped with scalar or vector fields representing physical properties (for example : density, porosity, permeability). Our contributions are: (1) An efficient generic visualization method that uses GPU's power to accelerate isosurface extraction for large unstructured grids. (2) An adaptative cell classification method that accelerates isosurface extraction by pre-selecting only intersected cells. (3) An efficient algorithm for temporal interpolation of isosurfaces. This algrithm helps to visualize in a continuous maner the evolution of isosurfaces through time. (4) A massively parallel algorithm for solving large sparse unstructured linear systems on the GPU. Its originality comes from its adaptation to sparse matrices with random pattern, which enables to solve any sparse linear system, thus the ones that come from strongly unstructured grids
48

Técnica híbrida de visualização para exploração de dados volumétricos não estruturados / A hybrid visualization technique for exploring unstructured volumetric data

Cateriano, Patricia Shirley Herrera 21 May 2003 (has links)
Este trabalho apresenta uma nova técnica de visualização que aproveita as vantagens do rendering volumétrico direto e do rendering de superfícies em um ambiente híbrido. O método faz uso de uma pré-visualização sobre o bordo do volume que viabiliza uma interação em tempo real com objetos volumétricos modelados por meio de malhas não estruturadas. Além disso, essa nova abordagem de visualização é paralelizável e pode se acelerada com placas gráficas comuns. / This work presents a new visualization technique that exploits the advantages of direct volume rendering and surface rendering in a hybrid environment. The method developed here makes use of a pre-visualization on the volume boundary to enable real time interaction with unstructured volumetric meshes. Furthermore, this new visualization approach can be implemented on existing parallel architectures and speed up by conventional graphical hardware.
49

A Three-dimensional Direct Simulation Monte Carlo Methodology on Unstructured Delaunay Grids with Applications to Micro and Nanoflows

Chamberlin, Ryan Earl 29 March 2007 (has links)
The focus of this work is to present in detail the implementation of a three dimensional direct simulation Monte Carlo methodology on unstructured Delaunay meshes (U-DSMC). The validation and verification of the implementation are shown using a series of fundamental flow cases. The numerical error associated with the implementation is also studied using a fundamental flow configuration. Gas expansion from microtubes is studied using the U-DSMC code for tube diameters ranging from 100Æ’ÃÂ�m down to 100nm. Simulations are carried out for a range of inlet Knudsen numbers and the effect of aspect ratio and inlet Reynolds number on the plume structure is investigated. The effect of scaling the geometry is also examined. Gas expansion from a conical nozzle is studied using the U-DSMC code for throat diameters ranging from 250 Æ’ÃÂ�m down to 250 nm. Simulations are carried out for a range of inlet Knudsen numbers and the effect of inlet speed ratio and inlet Reynolds number on the plume structure is investigated. The effect of scaling the geometry is examined. Results of a numerical study using the U-DSMC code are employed to guide the design of a micropitot probe intended for use in analyzing rarefied gaseous microjet flow. The flow conditions considered correspond to anticipated experimental test cases for a probe that is currently under development. The expansion of nitrogen from an orifice with a diameter of 100Æ’ÃÂ�m is modeled using U-DSMC. From these results, local ¡¥free stream¡¦ conditions are obtained for use in U-DSMC simulations of the flow in the vicinity of the micropitot probe. Predictions of the pressure within the probe are made for a number of locations in the orifice plume. The predictions from the U-DSMC simulations are used for evaluating the geometrical design of the probe as well as aiding in pressure sensor selection. The effect of scale on the statistical fluctuation of the U-DSMC data is studied using Poiseuille flow. The error in the predicted velocity profile is calculated with respect to both first and second-order slip formulations. Simulations are carried out for a range of channel heights and the error between the U-DSMC predictions and theory are calculated for each case. From this error, a functional dependence is shown between the scale-induced statistical fluctuations and the decreasing channel height.
50

A Three-dimensional Particle-in-Cell Methodology on Unstructured Voronoi Grids with Applications to Plasma Microdevices

Spirkin, Anton M 05 May 2006 (has links)
The development and numerical implementation of a three-dimensional Particle-In-Cell (PIC) methodology on unstructured Voronoi-Delauney tetrahedral grids is presented. Charge assignment and field interpolation weighting schemes of zero- and first-order are formulated based on the theory of long-range constraints for three-dimensional unstructured grids. The algorithms for particle motion, particle tracing, particle injection, and loading are discussed. Solution to Poisson's equation is based on a finite-volume formulation that takes advantage of the Voronoi-Delauney dual. The PIC methodology and code are validated by application to the problem of current collection by cylindrical Langmuir probes in stationary and moving collisionless plasmas. Numerical results are compared favorably with previous numerical and analytical solutions for a wide range of probe radius to Debye length ratios, probe potentials, and electron to ion temperature ratios. A methodology for evaluation of the heating, slowing-down and deflection times in 3D PIC simulations is presented. An extensive parametric evaluation is performed and the effects of the number of computational particles per cell, the ratio of cell-edge to Debye length, and timestep are investigated. The unstructured PIC code is applied to the simulation of Field Emission Array (FEA) cathodes. Electron injection conditions are obtained from a Field Emission microtip model and the simulation domain includes the FEA cathode and anode. Currents collected by the electrodes are compared to theoretical values. Simulations show the formation of the virtual cathode and three-dimensional effects under certain injection conditions. The unstructured PIC code is also applied to the simulation of a micro-Retarding Potential Analyzer. For simple cases the current at the collector plate is compared favorably with theoretical predictions. The simulations show the complex structure of the potential inside the segmented microchannel, the phase space of plasma species and the space-charge effects not captured by the theory.

Page generated in 0.0751 seconds