• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 6
  • 4
  • 3
  • 1
  • 1
  • Tagged with
  • 42
  • 42
  • 11
  • 10
  • 10
  • 10
  • 8
  • 7
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Quantum coin flipping and bit commitment : optimal bounds, pratical constructions and computational security / Pile-ou-face et mise-en-gage de bit quantique : bornes optimales, constructions pratiques et sécurité calculatoire

Chailloux, André 24 June 2011 (has links)
L'avènement de l'informatique quantique permet de réétudier les primitives cryptographiques avec une sécurité inconditionnelle, c'est à dire sécurisé même contre des adversaires tout puissants. En 1984, Bennett et Brassard ont construit un protocole quantique de distribution de clé. Dans ce protocole, deux joueurs Alice et Bob coopèrent pour partager une clé secrète inconnue d'une tierce personne Eve. Ce protocole a une sécurité inconditionnelle et n'a pasd'équivalent classique.Dans ma thèse, j'ai étudié les primitives cryptographiques à deux joueurs où ces joueurs ne se font pas confiance. J'étudie principalement le pile ou face quantique et la mise-en-gage quantique de bit. En informatique classique, ces primitivessont réalisables uniquement avec des hypothèses calculatoires, c'est-à-dire en supposant la difficulté d'un problème donné. Des protocoles quantiques ont été construits pour ces primitives où un adversaire peut tricher avec une probabilité constante strictement inférieure à 1, ce qui reste impossible classiquement. Néanmoins, Lo et Chau ont montré l'impossibilité de créer ces primitives parfaitement même en utilisant l'informatique quantique. Il reste donc à déterminer quelles sont les limites physiques de ces primitives.Dans une première partie, je construis un protocole quantique de pile ou face où chaque joueur peut tricher avec probabilité au plus 1/racine(2) + eps pour tout eps > 0. Ce résultat complète un résultat de Kitaev qui dit que dans un jeu de pile ou face quantique, un joueur peut toujours tricher avec probabilité au moins 1/racine(2). J'ai également construit un protocole de mise-en-gage de bit quantique optimal où un joueur peut tricher avec probabilité au plus 0,739 + eps pour tout eps > 0 puis ai montré que ce protocole est en fait optimal. Finalement, j'ai dérivé des bornes inférieures et supérieures pour une autre primitive: la transmission inconsciente, qui est une primitive universelle.Dans une deuxième partie, j'intègre certains aspects pratiques dans ces protocoles. Parfois les appareils de mesure ne donnent aucun résultat, ce sont les pertes dans la mesure. Je construis un protocole de lancer de pièce quantique tolérant aux pertes avec une probabilité de tricher de 0,859. Ensuite, j'étudie le modèle dispositif-indépendant où on ne suppose plus rien sur les appareils de mesure et de création d'état quantique.Finalement, dans une troisième partie, j'étudie ces primitives cryptographiques avec un sécurité computationnelle. En particulier, je fais le lien entre la mise en gage de bit quantique et les protocoles zero-knowledge quantiques. / Quantum computing allows us to revisit the study of quantum cryptographic primitives with information theoretic security. In 1984, Bennett and Brassard presented a protocol of quantum key distribution. In this protocol, Alice and Bob cooperate in order to share a common secret key k, which has to be unknown for a third party that has access to the communication channel. They showed how to perform this task quantumly with an information theoretic security; which is impossible classically.In my thesis, I study cryptographic primitives with two players that do not trust each other. I study mainly coin flipping and bit commitment. Classically, both these primitives are impossible classically with information theoretic security. Quantum protocols for these primitives where constructed where cheating players could cheat with probability stricly smaller than 1. However, Lo, Chau and Mayers showed that these primitives are impossible to achieve perfectly even quantumly if one requires information theoretic security. I study to what extent imperfect protocols can be done in this setting.In the first part, I construct a quantum coin flipping protocol with cheating probabitlity of 1/root(2) + eps for any eps > 0. This completes a result by Kitaev who showed that in any quantum coin flipping protocol, one of the players can cheat with probability at least 1/root(2). I also constructed a quantum bit commitment protocol with cheating probability 0.739 + eps for any eps > 0 and showed that this protocol is essentially optimal. I also derived some upper and lower bounds for quantum oblivious transfer, which is a universal cryptographic primitive.In the second part, I study some practical aspects related to these primitives. I take into account losses than can occur when measuring a quantum state. I construct a Quantum Coin Flipping and Quantum Bit Commitment protocols which are loss-tolerant and have cheating probabilities of 0.859. I also construct these primitives in the device independent model, where the players do not trust their quantum device. Finally, in the third part, I study these cryptographic primitives with information theoretic security. More precisely, I study the relationship between computational quantum bit commitment and quantum zero-knowledge protocols.
42

Assessing the robustness of genetic codes and genomes

Sautié Castellanos, Miguel 06 1900 (has links)
Deux approches principales existent pour évaluer la robustesse des codes génétiques et des séquences de codage. L'approche statistique est basée sur des estimations empiriques de probabilité calculées à partir d'échantillons aléatoires de permutations représentant les affectations d'acides aminés aux codons, alors que l'approche basée sur l'optimisation repose sur le pourcentage d’optimisation, généralement calculé en utilisant des métaheuristiques. Nous proposons une méthode basée sur les deux premiers moments de la distribution des valeurs de robustesse pour tous les codes génétiques possibles. En se basant sur une instance polynomiale du Problème d'Affectation Quadratique, nous proposons un algorithme vorace exact pour trouver la valeur minimale de la robustesse génomique. Pour réduire le nombre d'opérations de calcul des scores et de la borne supérieure de Cantelli, nous avons développé des méthodes basées sur la structure de voisinage du code génétique et sur la comparaison par paires des codes génétiques, entre autres. Pour calculer la robustesse des codes génétiques naturels et des génomes procaryotes, nous avons choisi 23 codes génétiques naturels, 235 propriétés d'acides aminés, ainsi que 324 procaryotes thermophiles et 418 procaryotes non thermophiles. Parmi nos résultats, nous avons constaté que bien que le code génétique standard soit plus robuste que la plupart des codes génétiques, certains codes génétiques mitochondriaux et nucléaires sont plus robustes que le code standard aux troisièmes et premières positions des codons, respectivement. Nous avons observé que l'utilisation des codons synonymes tend à être fortement optimisée pour amortir l'impact des changements d'une seule base, principalement chez les procaryotes thermophiles. / There are two main approaches to assess the robustness of genetic codes and coding sequences. The statistical approach is based on empirical estimates of probabilities computed from random samples of permutations representing assignments of amino acids to codons, whereas, the optimization-based approach relies on the optimization percentage frequently computed by using metaheuristics. We propose a method based on the first two moments of the distribution of robustness values for all possible genetic codes. Based on a polynomially solvable instance of the Quadratic Assignment Problem, we propose also an exact greedy algorithm to find the minimum value of the genome robustness. To reduce the number of operations for computing the scores and Cantelli’s upper bound, we developed methods based on the genetic code neighborhood structure and pairwise comparisons between genetic codes, among others. For assessing the robustness of natural genetic codes and genomes, we have chosen 23 natural genetic codes, 235 amino acid properties, as well as 324 thermophilic and 418 non-thermophilic prokaryotes. Among our results, we found that although the standard genetic code is more robust than most genetic codes, some mitochondrial and nuclear genetic codes are more robust than the standard code at the third and first codon positions, respectively. We also observed that the synonymous codon usage tends to be highly optimized to buffer the impact of single-base changes, mainly, in thermophilic prokaryotes.

Page generated in 0.0783 seconds