• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 7
  • 7
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Calculs multipartites

Stiglic, Anton January 2000 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
2

Unconditionally Secure Cryptographic Protocols from Coding-Theoretic Primitives / Protocoles avec Sécurité Inconditionnelle issus de Techniques de la Théorie des Codes

Spini, Gabriele 06 December 2017 (has links)
Le sujet de cette thèse est la cryptographie et son interconnexions avec la théorie des codes. En particulier, on utilise des techniques issues de la théorie des codes pour construire et analyser des protocoles cryptographiques avec des propriétés nouvelles ou plus avancées. On se concentre d'abord sur le partage de secret ou secret sharing, un sujet important avec de nombreuses applications pour la Cryptographie actuelle. Dans la variante à laquelle on s'intéresse, un schéma de partage de secret reçoit en entrée un élément secret, et renvoie en sortie n parts de telle façon que chaque ensemble de parts de taille suffisamment petite ne donne aucune information sur le secret (confidentialité), tandis que chaque ensemble de taille suffisamment grande permet de reconstituer le secret (reconstruction). Un schéma de partage de secret peut donc être vu comme une solution à un problème de communication où un émetteur Alice est connectée avec un destinataire Bob par n canaux distincts, dont certains sont contrôlés par un adversaire Ève. Alice peut utiliser un schéma de partage de secret pour communiquer un message secret a Bob de telle façon qu'Ève n'apprenne aucune information sur le secret en lisant les données transmises sur les canaux qu'elle contrôle, tandis que Bob peut recevoir le message même si Ève bloque ces dits canaux. Notre contributions au partage de secret concernent ses liens avec la théorie des codes ; comme les deux domaines partagent un même but (récupérer des données à partir d'informations partielles), ce n'est pas surprenant qu'ils aient connu une interaction longue et fertile. Plus précisément, Massey commença une analyse fructueuse à propos de la construction et de l'étude d'un schéma de partage de secret à partir d'un code correcteur. L'inconvénient de cette analyse est que la confidentialité d'un schéma de partage de secret est estimé grâce au dual du code sous-jacent ; cela peut être problématique vu qu'il pourrait ne pas être possible d'obtenir des codes avec des propriétés souhaitables qui aient aussi un bon code dual. On contourne ce problème en établissant une connexion nouvelle entre les deux domaines, telle que la confidentialité d'un schéma de partage de secrets n'est plus contrôlée par le dual du code sous-jacent. Cela nous permet d'exploiter complètement le potentiel de certaines constructions récentes de codes pour obtenir des meilleurs schémas; on illustre ceci avec deux applications. Premièrement, en utilisant des codes avec codage et décodage en temps linéaire on obtient une famille de schémas de partage de secret où le partage (calcul des parts issues du secret) tout comme la reconstruction peuvent s'effectuer en temps linéaire ; pour des seuils de confidentialité et de reconstruction croissants, ceci restait jusqu'à présent un problème ouvert. Deuxièmement, on utilise des codes avec décodage en liste pour construire des schémas de partage de secret robustes, c'est-à-dire des schémas qui peuvent reconstituer le secret même si certaines parts sont incorrectes, sauf avec une petite probabilité d'erreur. etc... / The topic of this dissertation is Cryptography, and its connections with Coding Theory. Concretely, we make use of techniques from Coding Theory to construct and analyze cryptographic protocols with new and/or enhanced properties. We first focus on Secret Sharing, an important topic with many applications to modern Cryptography, which also forms the common ground for most of the concepts discussed in this thesis. In the flavor we are interested in, a secret-sharing scheme takes as input a secret value, and produces as output n shares in such a way that small enough sets of shares yield no information at all on the secret (privacy), while large enough sets of shares allow to recover the secret (reconstruction). A secret-sharing scheme can thus be seen as a solution to a secure communication problem where a sender Alice is connected to a receiver Bob via $n$ distinct channels, some of which are controlled by an adversary Eve. Alice can use a secret-sharing scheme to communicate a secret message to Bob in such a way that Eve learns no information on the message by eavesdropping on the channels she controls, while Bob can receive the message even if Eve blocks the channels under her control. Our contributions to Secret Sharing concern its connection with Coding Theory; since the two fields share the goal of recovering data from incomplete information, it is not surprising that Secret Sharing and Coding Theory have known a long and fruitful interplay. In particular, Massey initiated a very successful analysis on how to construct and study secret-sharing schemes from error-correcting codes. The downside of this analysis is that the privacy of secret-sharing schemes is estimated in terms of the dual of the underlying code; this can be problematic as it might not be possible to obtain codes with desirable properties that have good duals as well. We circumvent this problem by establishing a new connection between the two fields, where the privacy of secret-sharing schemes is no longer controlled by the dual of the underlying code. This allows us to fully harness the potential of recent code constructions to obtain improved schemes; we exemplify this by means of two applications. First, by making use of linear-time encodable and decodable codes we obtain a family of secret-sharing schemes where both the sharing (computation of the shares from the secret) and the reconstruction can be performed in linear time; for growing privacy and reconstruction thresholds, this was an hitherto open problem. Second, we make use of list-decodable codes to construct robust secret-sharing schemes, i.e., schemes that can recover the secret even if some of the shares are incorrect, except with a small error probability. The family we present optimizes the trade-off between the extra data that needs to be appended to the share to achieve robustness and the error probability in the reconstruction, reaching the best possible value. etc...
3

Réduction du transfert inconscient en d'autres primitives de la théorie de l'information

Debbih, Meriem January 2004 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
4

Quantum coin flipping and bit commitment : optimal bounds, pratical constructions and computational security

Chailloux, Andre 24 June 2011 (has links) (PDF)
L'avènement de l'informatique quantique permet de réétudier les primitives cryptographiques avec une sécurité inconditionnelle, c'est à dire sécurisé même contre des adversaires tout puissants. En 1984, Bennett et Brassard ont construit un protocole quantique de distribution de clé. Dans ce protocole, deux joueurs Alice et Bob coopèrent pour partager une clé secrète inconnue d'une tierce personne Eve. Ce protocole a une sécurité inconditionnelle et n'a pasd'équivalent classique.Dans ma thèse, j'ai étudié les primitives cryptographiques à deux joueurs où ces joueurs ne se font pas confiance. J'étudie principalement le pile ou face quantique et la mise-en-gage quantique de bit. En informatique classique, ces primitivessont réalisables uniquement avec des hypothèses calculatoires, c'est-à-dire en supposant la difficulté d'un problème donné. Des protocoles quantiques ont été construits pour ces primitives où un adversaire peut tricher avec une probabilité constante strictement inférieure à 1, ce qui reste impossible classiquement. Néanmoins, Lo et Chau ont montré l'impossibilité de créer ces primitives parfaitement même en utilisant l'informatique quantique. Il reste donc à déterminer quelles sont les limites physiques de ces primitives.Dans une première partie, je construis un protocole quantique de pile ou face où chaque joueur peut tricher avec probabilité au plus 1/racine(2) + eps pour tout eps > 0. Ce résultat complète un résultat de Kitaev qui dit que dans un jeu de pile ou face quantique, un joueur peut toujours tricher avec probabilité au moins 1/racine(2). J'ai également construit un protocole de mise-en-gage de bit quantique optimal où un joueur peut tricher avec probabilité au plus 0,739 + eps pour tout eps > 0 puis ai montré que ce protocole est en fait optimal. Finalement, j'ai dérivé des bornes inférieures et supérieures pour une autre primitive: la transmission inconsciente, qui est une primitive universelle.Dans une deuxième partie, j'intègre certains aspects pratiques dans ces protocoles. Parfois les appareils de mesure ne donnent aucun résultat, ce sont les pertes dans la mesure. Je construis un protocole de lancer de pièce quantique tolérant aux pertes avec une probabilité de tricher de 0,859. Ensuite, j'étudie le modèle dispositif-indépendant où on ne suppose plus rien sur les appareils de mesure et de création d'état quantique.Finalement, dans une troisième partie, j'étudie ces primitives cryptographiques avec un sécurité computationnelle. En particulier, je fais le lien entre la mise en gage de bit quantique et les protocoles zero-knowledge quantiques.
5

Quantum Information with Optical Continuous Variables: from Bell Tests to Key Distribution/Information Quantique avec Variables Continues Optiques: des Tests de Bell à la Distribution de Clé

García-Patrón Sánchez, Raúl 12 October 2007 (has links)
In this thesis we have studied different aspects of the novel field of quantum information with continuous variables. The higher efficiency and bandwidth of homodyne detection combined with the easiness of generation and manipulation of Gaussian states makes continuous-variable quantum information a promising and flourishing field of research. This dissertation is divided in two parts. The first part explores two applications of the “photon subtraction” operation; Firstly, a technique to generate highly non-Gaussian single-mode states of light; Secondly, an experimental setup capable of realizing a loophole-free Bell test. The second part of this dissertation develops a detailed analysis of an important family of continuous-variable quantum key distribution protocols, namely those based on Gaussian modulation of Gaussian states./Dans cette thèse on a étudié différents aspects de l'information quantique à variables continues. Les meilleures efficacité et bande passante de la détection homodyne combinées à la simplicité de génération et de manipulation d'états gaussiens rend l'information quantique à variables continues un domaine de recherche très prometteur, qui est actuellement en plein essor. La dissertation est divisée en deux parties. La première explore deux applications de l'opération “soustraction de photon”; en premier lieu on présente une nouvelle technique capable de générer des états mono-modaux de la lumière hautement non-gaussiens; deuxiemement on présente un schéma expérimental capable de réaliser un test de Bell sans faille logique. La deuxième partie de cette dissertation développe une étude détaillée d'une famille très importante de protocoles de distribution quantique de clé à variables continues, ceux basés sur la modulation gaussienne d'états gaussiens.
6

Quantum coin flipping and bit commitment : optimal bounds, pratical constructions and computational security / Pile-ou-face et mise-en-gage de bit quantique : bornes optimales, constructions pratiques et sécurité calculatoire

Chailloux, André 24 June 2011 (has links)
L'avènement de l'informatique quantique permet de réétudier les primitives cryptographiques avec une sécurité inconditionnelle, c'est à dire sécurisé même contre des adversaires tout puissants. En 1984, Bennett et Brassard ont construit un protocole quantique de distribution de clé. Dans ce protocole, deux joueurs Alice et Bob coopèrent pour partager une clé secrète inconnue d'une tierce personne Eve. Ce protocole a une sécurité inconditionnelle et n'a pasd'équivalent classique.Dans ma thèse, j'ai étudié les primitives cryptographiques à deux joueurs où ces joueurs ne se font pas confiance. J'étudie principalement le pile ou face quantique et la mise-en-gage quantique de bit. En informatique classique, ces primitivessont réalisables uniquement avec des hypothèses calculatoires, c'est-à-dire en supposant la difficulté d'un problème donné. Des protocoles quantiques ont été construits pour ces primitives où un adversaire peut tricher avec une probabilité constante strictement inférieure à 1, ce qui reste impossible classiquement. Néanmoins, Lo et Chau ont montré l'impossibilité de créer ces primitives parfaitement même en utilisant l'informatique quantique. Il reste donc à déterminer quelles sont les limites physiques de ces primitives.Dans une première partie, je construis un protocole quantique de pile ou face où chaque joueur peut tricher avec probabilité au plus 1/racine(2) + eps pour tout eps > 0. Ce résultat complète un résultat de Kitaev qui dit que dans un jeu de pile ou face quantique, un joueur peut toujours tricher avec probabilité au moins 1/racine(2). J'ai également construit un protocole de mise-en-gage de bit quantique optimal où un joueur peut tricher avec probabilité au plus 0,739 + eps pour tout eps > 0 puis ai montré que ce protocole est en fait optimal. Finalement, j'ai dérivé des bornes inférieures et supérieures pour une autre primitive: la transmission inconsciente, qui est une primitive universelle.Dans une deuxième partie, j'intègre certains aspects pratiques dans ces protocoles. Parfois les appareils de mesure ne donnent aucun résultat, ce sont les pertes dans la mesure. Je construis un protocole de lancer de pièce quantique tolérant aux pertes avec une probabilité de tricher de 0,859. Ensuite, j'étudie le modèle dispositif-indépendant où on ne suppose plus rien sur les appareils de mesure et de création d'état quantique.Finalement, dans une troisième partie, j'étudie ces primitives cryptographiques avec un sécurité computationnelle. En particulier, je fais le lien entre la mise en gage de bit quantique et les protocoles zero-knowledge quantiques. / Quantum computing allows us to revisit the study of quantum cryptographic primitives with information theoretic security. In 1984, Bennett and Brassard presented a protocol of quantum key distribution. In this protocol, Alice and Bob cooperate in order to share a common secret key k, which has to be unknown for a third party that has access to the communication channel. They showed how to perform this task quantumly with an information theoretic security; which is impossible classically.In my thesis, I study cryptographic primitives with two players that do not trust each other. I study mainly coin flipping and bit commitment. Classically, both these primitives are impossible classically with information theoretic security. Quantum protocols for these primitives where constructed where cheating players could cheat with probability stricly smaller than 1. However, Lo, Chau and Mayers showed that these primitives are impossible to achieve perfectly even quantumly if one requires information theoretic security. I study to what extent imperfect protocols can be done in this setting.In the first part, I construct a quantum coin flipping protocol with cheating probabitlity of 1/root(2) + eps for any eps > 0. This completes a result by Kitaev who showed that in any quantum coin flipping protocol, one of the players can cheat with probability at least 1/root(2). I also constructed a quantum bit commitment protocol with cheating probability 0.739 + eps for any eps > 0 and showed that this protocol is essentially optimal. I also derived some upper and lower bounds for quantum oblivious transfer, which is a universal cryptographic primitive.In the second part, I study some practical aspects related to these primitives. I take into account losses than can occur when measuring a quantum state. I construct a Quantum Coin Flipping and Quantum Bit Commitment protocols which are loss-tolerant and have cheating probabilities of 0.859. I also construct these primitives in the device independent model, where the players do not trust their quantum device. Finally, in the third part, I study these cryptographic primitives with information theoretic security. More precisely, I study the relationship between computational quantum bit commitment and quantum zero-knowledge protocols.
7

Quantum information with optical continuous variables: from Bell tests to key distribution / Information quantique avec variables continues optiques: des tests de Bell à la distribution de clé

Garcia-Patron Sanchez, Raul 12 October 2007 (has links)
In this thesis we have studied different aspects of the novel field of quantum information with continuous variables. The higher efficiency and bandwidth of homodyne detection combined with the easiness of generation and manipulation of Gaussian states makes continuous-variable quantum information a promising and flourishing field of research. This dissertation is divided in two parts. The first part explores two applications of the “photon subtraction” operation; Firstly, a technique to generate highly non-Gaussian single-mode states of light; Secondly, an experimental setup capable of realizing a loophole-free Bell test. The second part of this dissertation develops a detailed analysis of an important family of continuous-variable quantum key distribution protocols, namely those based on Gaussian modulation of Gaussian states./Dans cette thèse on a étudié différents aspects de l'information quantique à variables continues. Les meilleures efficacité et bande passante de la détection homodyne combinées à la simplicité de génération et de manipulation d'états gaussiens rend l'information quantique à variables continues un domaine de recherche très prometteur, qui est actuellement en plein essor. La dissertation est divisée en deux parties. La première explore deux applications de l'opération “soustraction de photon”; en premier lieu on présente une nouvelle technique capable de générer des états mono-modaux de la lumière hautement non-gaussiens; deuxiemement on présente un schéma expérimental capable de réaliser un test de Bell sans faille logique. La deuxième partie de cette dissertation développe une étude détaillée d'une famille très importante de protocoles de distribution quantique de clé à variables continues, ceux basés sur la modulation gaussienne d'états gaussiens. / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished

Page generated in 0.1347 seconds