271 |
An investigation of chromium and nickel uptake in tomato plants irrigated with treated waste water at the Glen Valley farm, Gaborone, BotswanaAdetogun, Adeyemo Adekanmi 22 September 2011 (has links)
The use of treated waste water for irrigation of vegetable crops is on the increase in Botswana especially in the Glen Valley farms, a peri-urban settlement of Gaborone city. However, the effects of this practice on heavy metals uptake by vegetable crops are uninvestigated. Chromium and nickel have been reported to be accumulating in Gaborone crop soils and cultivating vegetables in these soils with treated waste water could potentially lead to an increased bio-availability of the heavy metals in the vegetable crops. The main aim of this study was therefore to compare the uptake of chromium and nickel in tomato plants, a vegetable grown in sludge amended Glen Valley soils, to those grown in sludge absent Glen Valley soils using treated waste water at different pH values and tap water for irrigation. The high water uptake and high water consumption rate of tomato plants made it suitable for this study. Twenty five pots each containing 2.5 kg sludge amended Glen Valley soils and 5 pots each containing 2.5 kg sludge absent soils were utilized. Fresh treated waste water in a 50 L plastic container on a need by need basis was used. For the control experiments 5 pots each containing 2.5 kg standard commercial soils and fresh tap water were used. The potted tomato plants were cultivated from early May to middle of October 2009. One leaf and one fruit from each tomato plant was harvested and tested in this study. The highest uptakes of chromium (0.819 mg/L) and nickel (0.327 mg/L) were experienced in the leaves where the tomato plant were cultivated in standard commercial soil and irrigated with tap water at pH 7.0. The least uptake of chromium (0.052 mg/L) and that of nickel (-0.030 mg/L) was found in the fruits, where the tomatoes were grown in sludge amended Glen Valley soil and irrigated with normal Glen Valley treated waste water at pH 8.5. Increasing the pH of the treated waste water from 5.0 to 6.0 caused increased bio-accumulation of chromium and nickel in the leaves and the fruits of the tomato plants. Normal treated waste water (pH 8.5) and treated waste water at pH 9.0, however, reduced the chromium and the nickel uptake by the tomato plants. Treated waste water at pH 10.0 bio-accumulate more chromium and more nickel in the leaves and fruits of tomato plants. The pH variation experiments suggested that the fruit tissues accumulated more chromium and the leaf tissues accumulated more nickel. The mean chromium uptake in the tomato plants exceeded the Food and Agriculture Organization permissible limits but the Botswana Bureau of Standards effluent limit was not exceeded. The mean nickel concentrations were below the threshold limits for both local and international standards. Statistical analysis showed no significant difference between the mean chromium and the mean nickel concentration in the leaves and the fruits of the tomatoes at the 5% significant level. It can be concluded from this study that cultivating tomatoes with sludge amended Glen Valley soil combined with normal treated waste water at pH 8.5 could reduce the uptake of chromium and nickel uptake in tomato plants. However, an increase in the uptake of chromium and nickel in the leaves and fruits of the tomato plants could be triggered at slightly low pH (pH 5.0 and pH 6.0) and high pH (pH 10.0) of the treated waste water. It is recommended that the current practices of using treated waste water combined with sludge amended Glen Valley soil to cultivate tomatoes at the Glen Valley farm is good practice and should be continued. Nonetheless, further studies need to be carried out at the farm to establish possible phytotoxicity effects of these heavy metals on tomatoes when using treated waste water combined with sludge amended and sludge absent soils. / Dissertation (MSc)--University of Pretoria, 2011. / Chemical Engineering / unrestricted
|
272 |
Caracterização da família de reguladores de absorção de metais e resposta a estresse em Leptospira interrogans sorovar Copenhageni. / Characterization of the metal absorption regulator family and stress response in Leptospira interrogans serovar Copenhageni.Leonardo Hiroyuki Santos Momo 27 April 2015 (has links)
A leptospirose é uma zoonose de importância mundial, e é causada por bactérias patogênicas do gênero Leptospira, pertencente à ordem Spirochaetales. Os seres humanos são hospedeiros acidentais e os surtos de leptospirose ocorrem em grandes centros urbanos após enchentes contaminadas por urina de ratos. Existem poucas informações a respeito de como Leptospira spp lida com situações de estresse induzidas pelo hospedeiro e pelo ambiente. O ferro é um íon essencial para a maioria dos seres vivos. A regulação de genes envolvidos por seu aporte e estoque na célula bacteriana é mediada por proteínas da família de reguladores transcricionais, Fur (ferric uptake regulator). L. interrogans sorovar Copenhageni possui quatro ortólogos para Fur, que foram alvo de estudo deste trabalho. A caracterização destes genes foi realizada através de estudos evolutivos, determinação do seu padrão de expressão em modelo animal e análise de modelagem estrutural. Durante o andamento do mestrado, ensaios paralelos revelaram resultados promissores na análise de expressão de genes relacionados ao sistema SOS, um mecanismo de resposta bacteriano a danos no material genético. Assim sendo, o estudo de caracterização de expressão em modelo animal suscetível e resistente à doença foi ampliado. Ensaios de qRT-PCR de cDNAs provenientes de pulmão, rim e fígado permitiram a identificação de dois genes que foram expressos quase que constitutivamente ao longo de toda a infecção em todos os órgãos e organismos estudados: fur979 e recA. Os demais foram requeridos em dias específicos da infecção. Quanto aos componentes do sistema SOS, observamos padrão de expressão específico para o rim, no quinto dia após a infecção. Para os estudos evolutivos de Fur foi gerada uma árvore filogenética que revelou o agrupamento de duas sequências da família Fur de Leptospira interrogans sorovar Copenhageni em ramos fechados com sequências muito similares a proteína Fur e Zur de Escherichia coli. Os outros dois ortólogos agruparam com as proteínas correspondentes nas demais espécies de Leptospira. Uma destas sequências apresentou padrão evolutivo específico dentre as espécies patogênicas. A modelagem da estrutura terciária, confirmou o padrão evolutivo obtido em nossa inferência filogenética. / Leptospirosis is a worldwide zoonosis caused by pathogenic bacteria from the genus Leptospira, order Spirochetales. Human beings are accidental hosts, and leptospirosis outbreaks occur in large urban centers after contact with contaminated waterby rodent urine. There are few informations concerning the mechanisms employed by Leptospira sppto deal with the stress induced by the host and the environment Iron is an essential ion to most of living beings. The regulation of genes involved in its uptake and maintenance in the bacterial cell is mediated by the transcriptional regulator family proteins, Fur (ferric uptake regulators). L. interrogans serovar Copenhageni possesses four orthologues for Fur, which were the focus of this work. The characterization of Leptospira Fur genes was done through evolutive studies, determination of their expression pattern on animal model and structural modeling analysis. In parallel, some experiments presented promising results for the expression analysis of genes related to the SOS system, a bacterial response mechanism to DNA damage. Therefore, the gene expression characterization on susceptible and resistant animal model was amplified. qRT-PCR experiments of cDNA from lung, kidney and liver allowed the identification of two genes expressed almost constitutively during the infection in all organs and organisms : fur979 and recA. The others were required in specific days of the infection. Curiously, the SOS system components showed specific expression pattern in the fifth day after inoculation, in kidney. For the Fur evolutive studies, a phylogenetic tree was inferred, revealing the clustering of two Fur family sequences from Leptospira interrogans serovar Copenhageni in closed branches with very similar sequences to Fur and Zur proteins from Escherichia coli. The other two orthologues clustered with corresponding proteins in the other Leptospira species. One of these sequences presented a specific evolutive pattern among pathogenic species. The tertiary structure modeling confirmed the evolutive pattern obtained in our phylogenetic inference.
|
273 |
Assembly of metal–organic polyhedra into highly porous frameworks for ethene deliveryStoeck, Ulrich, Senkoska, Irena, Bon, Volodymyr, Krause, Simon, Kaskel, Stefan 19 December 2019 (has links)
Two new mesoporous metal–organic frameworks (DUT-75 and DUT-76) with exceptional ethene uptake were obtained using carbazole dicarboxylate based metal–organic polyhedra as supermolecular building blocks. The compounds have a total pore volume of 1.84 and 3.25 cm³ gˉ¹ and a specific BET surface area of 4081 and 6344 m² gˉ¹, respectively, and high gas uptake at room temperature and high pressure.
|
274 |
Evaluation of microbiological activity during the deammonification process for nitrogen removal.Wójcik, Weronika January 2011 (has links)
This master thesis is based on own studies. A four-month study was performed at Hammarby Sjostad Research Station, which is located in Stockholm. One-stage deammonification process was evaluated in two different system configurations in pilot plant scale. The theoretical background for this thesis works is presented in the first part and where is presented negative impacts of nitrogen compounds in environment and requirements for purified wastewater in European Union (Sweden and Poland). In the next part of the thesis the nitrogen cycle is described and with focus on biological reactions for nitrogen removal. Especially, nitrification/denitrification and anammox processes are described with special focus on parameters affecting the anammox process performance and its advantages and disadvantages of using this process. Experimental results from the four-month study and evaluation of the microbial activity are described in the last part.
|
275 |
Amphetamine-induced dopamine release in treatment-naïve men with ADHD : a PET[¹¹C]raclopride studyFaridi, Nazlie. January 2008 (has links)
No description available.
|
276 |
Assessment of arbuscular mycorrhizal fungi in flax production2015 October 1900 (has links)
Arbuscular mycorrhizal fungi (AMF) play an important role in nutrient cycling and growth of flax (Linum usitatissimum L.). However, limited information is available regarding the symbiotic association between flax and AMF in field environments. A study was conducted to survey AMF communities colonizing flax grown in Saskatchewan. Additionally, field and growth chamber studies investigated the impact of AMF inoculation on nutrient uptake and growth of flax. Eighteen commercial flax fields were surveyed to assess mycorrhizal colonization of flax and to assess the impact of agricultural practices and soil abiotic factors on AMF activity. The flax root-associated AMF communities were explored using a 454 sequencing method, together with microscopic-based measurements of root AMF colonization and soil spore density. High levels of root colonization were detected in most flax fields. Of the 222 AMF operational taxonomic units (OTUs) identified in flax roots, 181 OTUs clustered as Funneliformis-Rhizophagus, 19 as Claroideoglomus, 14 as Paraglomus, six as Diversisporales and two as Archaeospora. Results suggest that tillage influenced the composition of AMF communities colonizing flax, and reduced relative AMF abundance and species richness. Additionally, AMF community characteristics were related to soil abiotic factors such as pH, EC, available phosphorus and nitrogen. Field experiments were conducted over two years (two sites per year) using a commercial AMF inoculant applied at three rates (0, 1X, and 2X the recommended rate) with or without P fertilizer (16.8 kg ha-1). The response of flax cultivars to AMF inoculation was examined in a growth chamber experiment. In addition, 454 sequencing was employed to examine the impact of AMF inoculation on root-associated AMF communities. Under field conditions, only one site showed increased root colonization with AMF inoculation. Flax responded to AMF inoculation differently under different field conditions. At the two sites with intermediate initial soil P level, evidence of increased above-ground biomass and plant nutrient uptake with AMF inoculation was observed. However, such an effect was not detected when P fertilizer was combined with the inoculation. At a low P site and an irrigated site, P application accounted for all of the increases in plant nutrient uptake and biomass of flax, whereas no responses to AMF inoculation were detected. The 454 sequencing revealed different inoculation-induced changes in the diversity and composition of root-associated AMF communities between sites, which was possibly related to different field environments and native AMF communities. In the growth chamber, AMF inoculation resulted in general increases of plant nutrient uptake among cultivars, but only one cultivar showed enhanced biomass with inoculation. The diversity of AMF communities colonizing different flax cultivars was generally reduced by AMF inoculation. Community composition shifted under AMF inoculation, and the shifts appeared to be cultivar specific. These results suggested that benefits of AMF inoculation in flax production are limited and currently not predictable, and the degree of response is likely dependent on a myriad of soil and environmental conditions.
|
277 |
Effects of N-Acetylcysteine on fatigue, critical power, and muscle energy storesCorn, Sarah D. January 1900 (has links)
Master of Science / Department of Kinesiology / Thomas J. Barstow / The accumulation of reactive oxygen species (ROS) has been linked to the development of muscular fatigue. Antioxidant administration has the potential to counteract the increased levels of ROS, leading to improvements in performance. N-acetylcysteine (NAC), a nonspecific antioxidant, is especially promising due to its ability to support the biosynthesis of glutathione, one of the primary endogenous antioxidants. Despite this, the effects of NAC on time to fatigue appear to be dependent upon the exercise intensity, with the more pronounced effects evident at submaximal exercise intensities. The purpose of this study was to determine the effects of an acute dose of NAC on whole body fatigue, critical power (CP) and W’ during high-intensity exercise. It was hypothesized that pretreatment with NAC would result in (1) an increase in time to fatigue (TTF), CP and W’, (2) NAC administration would attenuate changes in the EMG responses indicative of fatigue, and (3) speeding of the kinetics of the primary phase of VO2 and a reduction in the slow component. Seven healthy, active males (age: 21.4 ± 1.6 years, weight: 89.1 ± 11.0 kg, height: 183 ± 5 cm) completed an incremental ramp test until exhaustion for the determination of peak VO2 and power. Four tests were subsequently performed at power outputs corresponding to 80, 90, 100, and 110% Pmax under NAC and placebo (PLA) conditions. NAC resulted in a significant increase in [tGSH] in red blood cells compared to baseline and PLA condition. TTF was significantly increased only in the 80% Pmax trial (p = 0.033). CP was also significantly higher with NAC (NAC: 232 ± 28 W vs PLA: 226 ± 31 W; p = 0.032), but W’ showed a tendency to decrease (NAC: 15.5 ± 3.8 kJ vs W’: 16.4 ± 4.5 kJ). The change in W’ was negatively related to CP (r = -0.96), indicating that the increase in CP was associated with a decrease in W’. EMG analysis revealed a tendency for MdPF and RMS to demonstrate less of a change with NAC. There were no significant differences in VO2 kinetics, but an inverse relationship was observed between the change in τp and the magnitude of the slow component expressed both in absolute terms (r = -0.632, p = 0.007) and as a gain (r = -0.751, p = 0.0005). We conclude that NAC was effective in delaying fatigue and improving exercise performance at 80% peak power, although the exact mechanisms are still unclear.
|
278 |
Biochemical and Biophysical Studies of Heme Binding Proteins from the Corynebacterium diphtheriae and Streptococcus pyogenes Heme Uptake PathwaysDraganova, Elizabeth B 09 May 2016 (has links)
The Gram-positive pathogens Corynebacterium diphtheriae and Streptococcus pyogenes both require iron for survival. These bacteria have developed sophisticated heme uptake and transport protein machinery responsible for the import of iron into the cell, in the form of heme from the human host. The heme utilization pathway (hmu) of C. diphtheriae utilizes multiple proteins to bind and transport heme into the cell. One of these proteins, HmuT, delivers heme to the ABC transporter HmuUV. The axial ligation of the heme in HmuT was probed by examination of wild-type HmuT and a series of conserved heme pocket residue mutants, H136A, Y235A, R237A, Y272A, M292A, Y349A, and Y349F. Characterization by UV-visible absorption, resonance Raman, and magnetic circular dichroism spectroscopies indicated that H136 and Y235 are the axial ligands in HmuT. Electrospray ionization mass spectrometry was also utilized to assess the roles of conserved residues in contribution to heme binding.
The S. pyogenes streptococcal iron acquisition (sia)/heme transport system (hts) utilizes multiple proteins to bring host heme to the intracellular space. Both the substrate binding protein SiaA and the hemoprotein surface receptor Shr were investigated. The kinetic effects on SiaA heme release were probed through chemical unfolding of axial ligand mutants M79A and H229A, as well mutants thought to contribute to heme binding, K61A and C58A, and a control mutant, C47A. The unfolding pathways showed two processes for protein denaturation. This is consistent with heme loss from protein forms differing by the orientation of the heme in the binding pocket. The ease of protein unfolding is related to the strength of interaction of the residues with the heme.
Shr contains two NEAT (near-iron transporter) domains (Shr-N1 and Shr-N2) which can both bind heme. Biophysical studies of both Shr-N1 and Shr-N2 indicated a new class of NEAT domains which utilize methionine as an axial ligand, rather than a tyrosine. Thermal and chemical unfolding showed ferrous Shr-N1 and Shr-N2 to be most resistant to denaturation. Shr-N2 was prone to autoreduction. Together, sequence alignment, homology modeling, and spectral signatures are all consistent with two methionines as the heme ligands of this novel type of NEAT heme-binding domain.
|
279 |
The role of thermal processing and protein oxidation in peanut allergyHillson, William Rawstron January 2013 (has links)
Food allergies are an increasing health problem throughout the developed world. Among these, peanut allergy is particularly significant, due to its exceptional severity and frequent lifelong duration. Much of its aetiology remains unclear. In particular, it remains unknown why, unlike other food allergies, peanut allergy incidence correlates poorly with average dietary peanut consumption. A popular explanation for this discrepancy is that peanut allergy is more common in regions where predominantly dry-roasted (DR) peanuts are consumed, leading to speculation that DR-induced chemical modifications may contribute to pathological T<sub>h</sub>2 responses in humans. Yet to date, no research group has demonstrated an enhanced immunogenicity of DR peanuts relative to raw in a murine model of sensitisation. This thesis begins with the hypothesis that dry-roasting does indeed alter the chemical composition of peanut proteins in such a way as to increase immunogenicity and allergenicity. To test this hypothesis robustly, I have first addressed flaws in previous studies by developing a methodology to thoroughly characterise samples of raw and DR peanut protein, as well as purifying samples of individual peanut allergens. Using these samples, I have demonstrated an enhanced immunogenicity of DR peanut protein relative to raw, in intragastric, subcutaneous and epicutaneous models of mouse sensitisation, and furthermore, that such enhanced responses feature a pronounced T<sub>h</sub>2 bias and functional IgE production. I will present evidence that this difference is not caused by either protein aggregation or the presence of other non-protein substances, but is due to an intrinsic property of the DR peanut proteins. I will go on to clarify candidate molecular mechanisms of this effect, examining several putative receptors and probing the effects of roasting on dendritic cell binding and interactions of peanut proteins. I conclude in light of these investigations that the dry-roasting hypothesis remains the most plausible explanation for the epidemiological distribution of peanut allergy, although many additional questions remain regarding the nature of the chemical modifications produced by roasting and the molecular basis of their recognition by the immune system.
|
280 |
Factors affecting the emergence, development and uptake of aviation biofuelsGegg, Per K. January 2014 (has links)
Aviation biofuel is technically viable and nearing the commercial stage. In the last 5 years aviation biofuel has moved from relative obscurity to become fully certified for commercial use in up to 50% blends with standard jet fuel. There have since been 15 successful commercial flight tests using aviation biofuels including Lufthansa s six month trial operating on a passenger revenue generating route in 2011. Airlines and biofuel companies such as British Airways and Solena are furthermore beginning to form partnerships to finance specialised aviation biofuel production facilities. However, aviation biofuels have yet to become widely commercialised. In fact, there are a series of issues preventing the emergence, development and uptake of aviation biofuels. The main issues are perceived as high costs of manufacture, limited availability of feedstocks, controversy surrounding the effect on food prices and the emissions output from land use change. Furthermore, there is a significant lack of academic peer reviewed literature which investigates these issues or offers solutions to support the development of the technology. This thesis aims to investigate the factors that affect the emergence, development and uptake of aviation biofuels by drawing upon in-depth stakeholder interviews and survey data. Strategic niche management (SNM) theory is used and extended to analyse the contemporary issues and develop recommendations to support the continued emergence, development and uptake of aviation biofuels. It is concluded that the emergence, development and uptake is being driven mainly by rising jet fuel prices, growing concern regarding aviation emissions legislation and fuel (in)security. Airlines, biofuel producers and specialised supply chain companies are driving emergence, development and uptake due to commercial opportunities. Despite these drivers, the emergence, development and uptake is being constrained by a combination of ineffective policy provision, high costs of production, limited feedstocks and uncertainty surrounding sustainability. Ineffective and unsuitable policy is exacerbating the issues of high production costs, limited feedstocks and sustainability. In particular, competition between aviation and road biofuels is limiting aviation biofuel expansion. Recommendations are to develop nurtured niche markets for aviation biofuels using principles from SNM. Within these markets, aviation biofuels are afforded commercial viability in order to learn about supply chain development, longer term infrastructural requirements and technological development. Information should be shared between the niche markets in order to maximise learning by doing and speed up efficiency gains. Once niche markets are established, the incentives and protection should be gradually reduced to allow a competitive aviation biofuel industry to develop.
|
Page generated in 0.0541 seconds