• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 8
  • 6
  • 5
  • 3
  • 1
  • Tagged with
  • 55
  • 55
  • 21
  • 19
  • 18
  • 13
  • 12
  • 11
  • 10
  • 9
  • 7
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Hydrological and Environmental Controls on Water Management in Semiarid Urban Areas

Resnick, Sol, DeCook, K. J. 09 1900 (has links)
Project Completion Report, OWRT Project No. B-012-ARIZ / Agreement No. 14-31-0001-3056 / Period of Operation: July 1969 to June 1972 / Acknowledgement: The work upon which this report is based was supported by funds provided by the United States Department of the Interior, Office of Water Resources Research, as authorized under the Water Resources Research Act of 1964. / Rainfall and runoff studies initiated in 1968 by the University of Arizona provide data for three small urban watersheds with different land use patterns in Tucson, Arizona. Annual precipitation of about 11 inches produces annual runoff, as measured at outflow flumes, ranging from 1.30 to 3.95 inches, produced by 15 to 23 runoff events per year. About 60 to 70 percent of the annual runoff events occur in the summer season, as does 65 to 75 percent of the annual volume of measured runoff. Water samples collected on a lumped basis show generally high concentrations of suspended sediment, bacterial loading, and dissolved organics. Initial field treatment and exploratory laboratory studies of treatment methods indicate that three days is an optimal length of time for detention storage of runoff, reducing average pollutant concentrations to 62 mg /1 of turbidity, total coliform of 70 -3200 organisms per 100 mg /1, and 7 mg /1 of chemical oxygen demand. Simple laboratory treatment with alum and polyelectrolyte yielded an 80 percent reduction in COD, 90 percent reduction in bacterial loading, and appreciable clarification of the runoff samples. Continuing research should be conducted to utilize a longer data record for improving understanding of rainfall- runoff relations; to use distributed sampling within individual watershed areas to define specific pollutant source areas; and to incorporate economic and legal questions involved in the utilization of urban runoff in an arid area.
22

Hydrological and Environmental Controls on Water Management in Semiarid Urban Areas -- Phase II

Resnick, Sol D., DeCook, K. James, Phillips, Robert A. 03 1900 (has links)
Research Project Technical Completion Report (B-023-ARIZ) For: United States Department of the Interior, Project Dates: 1971-1973. / The work upon which this report is based was supported by federal funds provided by the United States Department of the Interior, as authorized under the Water Research and Development Act of 1978, through Agreement No. 14-31-0001-3556. / Rainfall and runoff studies initiated by the University of Arizona provide data for three small urban watersheds from 1968 and one rural watershed from 1957 to 1969. These watersheds typify various land use patterns in Tucson, Arizona. Annual precipitation of about 11 inches produces annual runoff, as measured at outflow flumes, ranging from 0.44 inches in depth for the rural watershed and 1.10 to 2.10 inches for the urban watersheds. The runoff is produced by as few as 5 runoff events per year in the rural watershed and 16 to 22 events per year for the urban watersheds. About 60 percent of the rural and 50 to 58 percent of the urban annual runoff events occur in the summer season, as does 55 to 65 percent of the annual volume of measured runoff for both. There is about a four to five-fold increase in average yearly storm runoff volume with urbanization in the Tucson area. Water samples collected on a lumped basis show generally high concentrations of suspended sediment, bacterial loading, and dissolved organics. Initial field treatment and exploratory laboratory studies of treatment methods indicate that three days is an optimal length of time for detention storage of storm runoff, reducing average pollutant concentrations to 62 mg/1 of turbidity, total coliform of 70-3,200 organisms per 100 ml, and 7 mg/1 of chemical oxygen demand. Simple laboratory treatment with alum and polyelectrolyte yielded an 80 percent reduction in COD, 90 percent reduction in bacterial loading, and appreciable clarification of the runoff samples. Multi-purpose urban storm runoff management systems can be developed to control floods while at the same time maintaining water-based linear parks along minor stream channels in semiarid regions. Multi-purpose systems are more economical than the single-purpose systems required to accomplish the same purposes. Further studies are needed to characterize the quality of storm runoff from selected urban land use areas with a view toward on-site control and disposal.
23

Evaluating the Effects of Green Roofs as Tools for Stormwater Management in an Urban Metropolis

Polinsky, Robyn R. 01 December 2009 (has links)
Stormwater management is an essential aspect of urban hydrology. Urbanized areas have large amounts of impervious surface cover (ISC) and well developed sewer and drainage networks which rapidly channel water and pollutants off of streets and into local streams. This research evaluates the use of vegetated roofs as mechanisms to reduce ISC and stormwater runoff in downtown Atlanta. A 3-D model of the study site was created so that runoff rates could be measured for various rooftop scenarios under different size storm events. The results revealed a reduction in peak runoff and an increase in both the lag time and duration of response time. The results were most significant for the smallest storm event with 2/3 of the rooftops vegetated. As these experiments use a scale model for a section of downtown Atlanta, results are likely to be applicable to similar urban environments and may provide guidance for stormwater engineers.
24

Event Based Characterization of Hydrologic Change in Urbanizing Southern Ontario Watersheds via High Resolution Stream Gauge Data

Thompson, Peter John January 2013 (has links)
Tracking and quantifying hydrologic change in urbanizing watersheds is a complex problem which can vary spatially and temporally throughout the effective catchment area as change occurs. Hydromodification due to urbanization usually results in a larger peak event stream discharge, a change in typical event volume, a reduced lag time between rainfall and stream discharge events, and a more complex falling hydrograph. Recently extracted Environment Canada data have allowed the creation of a high resolution instantaneous stream flow dataset dating to the late 1960s for many Ontario gauge stations. Hydrometric data were obtained for fifteen urban and semi-urban catchments within Southern Ontario ranging in size from ~50km² to 300 km² with urbanized land use assemblages varying from <5% to 80%. Utilizing automated methods, each individual runoff event from the hydrographic record was identified and characterized. Temporal changes to urban land area, land use, and road length were quantified for each watershed from aerial photography spanning the period of record at approximately 8 year intervals allowing identified trends in event hydrograph parameters to be correlated quantitatively with the alteration of the catchment over time. <br> Increasing trends in event peak discharge were identified in all but one study catchment. Event volume was found to be consistently increasing in most of the urban watershed, while trends in event duration were observed but with no clear increasing or decreasing trend. The lack of consistent trends in the timing and distribution of flow during runoff events suggest that build-out, drainage network design, and stormwater management systems play differing roles in the neighbouring urban catchments. Changes to flood recurrence intervals through the period of urbanization were also investigated; peak magnitude of high frequency events is affected to a greater extent than low frequency or flood events. The relative change in return frequency distribution is not consistent between catchments, also the degree of alteration can differ between various recurrence intervals at a gauge. Peak discharge of some return periods appeared to decrease with urban development suggesting that the increased detention brought with urban stormwater management systems have effectively offset the increased runoff due to additional impervious area and improved drainage efficiency. A consistent relationship defining the change in geomorphically significant return periods (i.e. channel forming flow) with urbanization was identified in neighbouring urban catchments.
25

Methodology for long-term water supply planning : Mexico City case

Aguilar-Maldonado, Alexis, Aguilar-Maldonado, Alexis January 1979 (has links)
A complete methodology for long-term water supply planning is presented. Based upon the characteristics of the water resources development planning problem (nonlinearity of cost functions, and hydrologic variables), the author rejects the seeking of "optimal" solutions and supports the seeking of "good enough" solutions. To answer the questions that are involved in long-term water supply planning, it is proposed to break down the problem into two simpler ones to be solved in a sequential fashion. Although mathematical guarantee of optimality cannot be assured, the introduction of physical and engineering constraints greatly increases the confidence in the final results. The proposed methodology allows deep analysis of the hydrologic aspects involved in water resources planning. The depth of hydrologic analysis is only restricted by available data and technology. In this respect, a method for synthetic generation of monthly runoff records in ungaged streams is proposed. An application of the methodology to the development of a Mexico City water supply plan is presented in full detail to appreciate its usefulness. Mexico City population forecast for the year 2000 is 28 million people. The estimated water demand in that year is 105 m³/sec, more than twice the present water supply of 50 m³/sec. To satisfy this demand, water has to be brought from four basins more than 150 km distant, and located at elevations more than 1,000 m below Mexico City's elevation (2,300 m above mean sea level). The water supply plan which resulted from this study indicates the most recommendable sequence for the development of the four basins, and the amount of water to be obtained from each one.
26

Climate change effects on urban water resources: An interdisciplinary approach to modeling urban water supply and demand

Renee L Obringer (8274048) 24 April 2020 (has links)
Urban populations are growing at unprecedented rates around the world, while simultaneously facing increasingly intense impacts of climate change, from sea level rise to extreme weather events. In the face of this concurrent urbanization and climate change, it is imperative that cities improve their resilience to a multitude of stressors. A key aspect of urban resilience to climate change is ensuring that there is enough drinking water available to service the city, especially given the projections of more frequent and intense droughts in some areas. However, the study of climate impacts on urban water resources is fairly nascent and many gaps remain. In this dissertation, I aim to begin to close some of those gaps by adopting an interdisciplinary approach to studying water availability. First, I focus on urban water supply, and in particular, reservoir operations. I employ a variety of methods, ranging from data science techniques to traditional hydrological models, to predict the reservoir levels under a variety of climate conditions. Following the analysis of water supply, I shift focus to urban water demand. Here, I include interconnected systems, such as electricity, to evaluate and characterize the impact of climate on water demand and the benefit of considering system interconnectivities. Additionally, I present an analysis on the projection of water and electricity demand into the future, based on representative concentration pathways of CO<sub>2</sub>. Finally, I focus on the human dimension to the demand studies. By studying the social norms surrounding water conservation in urban areas, as well as the demographics, I built a predictive model to estimate monthly water consumption at the census tract-level. Through these interdisciplinary studies, I have made progress in filling knowledge gaps related to the impact of climate change on urban water resources, as well as the impact of people on these water resources.
27

New Method Aiming at Comprehensive Evaluation of Low Impact Development:Case Study in Tianjin, China / 環境影響の少ない都市計画の新たな総合的評価モデルの開発:中国天津市を例として

Li, Yu 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第21743号 / 工博第4560号 / 新制||工||1711(附属図書館) / 京都大学大学院工学研究科都市社会工学専攻 / (主査)教授 田中 茂信, 准教授 田中 賢治, 教授 中北 英一 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
28

Dual Isotope Analysis of Denitrification in Stormwater Basins

Morgan, Naomi January 2021 (has links)
Bioretention basins are a stormwater control method implemented in urban areas to curtail runoff and pollution; however, recent studies show inconsistent nitrate (NO3-) removal, and in many cases average nitrate concentrations in basin outflow are higher than inflow. Microbial denitrification to promote nitrate removal can be enhanced by using underdrains in basin design that provide anoxic conditions. This study examines the impact of basin design and storm characteristics (precipitation intensity and antecedent dry period length) on microbial denitrification efficacy. Three basins in the Philadelphia area were selected for storm sampling: a large (~0.6 ha) wet basin without internal water storage, a small (~0.02 ha) basin without internal water storage, and a medium-sized (~0.1 ha) basin with internal water storage and a raised underdrain. In addition, three laboratory bioretention columns with underdrain configurations at the bottom, middle, and top of an internal water storage zone were sampled under steady-state and transient flow conditions. Samples collected as time series and grab samples during storm events were analyzed for nitrate concentrations and nitrate isotopes. Because microbes preferentially consume lighter nitrate isotopes (14N and 16O), stable isotope analysis offers an indication of denitrification. Stormwater outlet nitrate concentrations were lower than the inlet in the large suburban basin, similar to the inlet in the small suburban basin, and higher than the inlet in the urban basin. Differences in storm intensity and dry periods did not appear to increase or decrease nitrate concentrations in any basin, suggesting that basin design is a more dominant factor. The values of δ15N and δ18O in basin samples showed stormwater mixing without denitrification in all three basins. Only in the basin with water internal storage were periods of denitrification in samples observed, based on heavier δ15N and δ18O ratios. In laboratory studies, a lower underdrain configuration is preferred to promote denitrification based on heavier isotopic ratios and enrichment calculations. Bioretention columns had the largest enrichment factors (up to -5.3‰ ɛ 15N and -5.0‰ ɛ 18O) during steady-state flow. Lower enrichment factors associated with the low-intensity storm (-2.6‰ ɛ 15N and -1.3‰ ɛ 18O) show that transient flow disrupted denitrification rates. Field enrichment factors were greater than those in the columns (up to -11.9‰ ɛ 15N and -7.4‰ ɛ 18O). Even though nitrate decreased consistently over three storms, isotopic ratios did not exhibit these denitrification trends until at least eight hours after the onset of the storm events. Therefore, decreases in nitrate concentration alone are an unreliable assessment of denitrification efficacy. This study suggests that isotope analysis should be considered to better understand the conditions that promote denitrification. / Geology
29

Development and Its Impact on the Water Balance of an Urban Watershed

Chenevey, Benjamin 15 October 2013 (has links)
No description available.
30

MONITORING STORMWATER INFILTRATION IN A VACANT LOT COMPARING TIME-LAPSE ELECTROMAGNETIC INDUCTION AND ELECTRICAL RESISTIVITY TOMOGRAPHY

Carsillo, Vincent John January 2018 (has links)
Vacant lots in cities and surrounding urban areas can potentially be used for stormwater management because they are pervious. However, the extent to which vacant lots provide pervious cover to increase infiltration and reduce stormflow is poorly understood. The goal of this study was to develop faster methods for monitoring stormwater infiltration to improve characterization of heterogeneous urban systems. Geophysical techniques are capable of mapping and characterizing subsurface materials, but are often limited by time and sensitivity constraints. In this study, the infiltration characteristics of a vacant lot created by the demolition of a house was characterized using a series of modeling, field and lab experiments. Site characterization under background conditions with an EM Profiler was used to map zones of different fill materials. Three zones were identified in the study site: grass area, driveway area, and a former house area. Transient soil moisture conditions were monitored during irrigation tests using two geophysical methods (electrical resistivity tomography [ERT] and electromagnetic induction [EM]) to evaluate method sensitivity and differences between the three zones. ERT proved more sensitive than EM profiling at detecting changes in the three zones. Soil moisture changes in the driveway area were particularly difficult to detect using EM. The EM Profiler showed a reduction rather than increase in conductivity at the start of irrigation and storms, which was attributed to flushing of high conductivity pore fluids by dilute irrigation or rain water. This explanation was supported using Archie’s Law to model the response of apparent conductivity under highly conductive pore fluid conditions. The EM Profiler was also used under natural precipitation conditions to quickly monitor areas too large for the ERT to reasonably survey. The results suggested that EM instrument drift needs to be corrected to make the method more sensitive. It was difficult to detect differences in hydrologic characterization between areas of the vacant lot using traditional soil point measurements because of the inherent spatial variability. The most useful point measurement was soil moisture loggers. Data from soil moisture loggers was used to parameterize the model; in addition, the soil moisture loggers showed a slow drying period. By combining the EM Profiler method with soil moisture data and applying corrections for drift, some improvement in sensitivity might be achieved. Quantitative characterization of fill material was shown by ERT, which detected more heterogeneous infiltration in the area of the former house than in the grass area. / Geology

Page generated in 0.0654 seconds