1 |
Simulerad nivåreglering av vattenkraftverkAzizi, Hadi January 2022 (has links)
Vattenkraften är en viktig del av den svenska elförsörjningen och tillgodoser cirka 45 % av det årliga elbehovet i landet. Vattenkraften utnyttjar höjdskillnaden mellan inflödet och utflödet för att driva turbiner och producera el. I Sverige finns omkring 200 dammar med en fallhöjd större än 15 m och för höga nivåer vid någon av dessa skulle leda till ett dammbrott med omfattande konsekvenser. Ett viktigt område som det investeras mycket i idag är dammsäkerhet vilket går ut på att undvika okontrollerade översvämningar av dammen. Kännedom av fallhöjd och flöde är nödvändiga inom vattenkraft för att kunna beräkna producerad effekt och även vid dimensionering av dammar, vattenvägar och generatorer. Mättningar på inflödet till ett vattendrag anses vara mycket komplicerat och tidskrävande däremot kan utflödet genom utskoven beräknas med matematiska samband. Utskov avser öppningar i dammen som används för att avbörda vatten. Det finns således olika typer av utskov och det som påverkar valen är aspekter som kostnad, väderförhållanden, avbördningsförmåga, etc. För att undvika en möjlig överströmning av en damm dimensioneras ofta utskoven med avseende på vilken mängd vatten de bör avbörda. Ett krav som ofta ställs är att det ska vara möjligt att avbörda en vattendrags högsta vattennivå (HHQ). Några av de mest förekommande varianter av kontrollerade utskov i Sverige är valsdammar, luckdammar och bottenutskov. Nivån i vattenmagasinet mäts upp med hjälp av sensorer som är placerade på olika platser vid dammen och uppmätta höga nivåer leder till att olika larmfunktioner löser ut. Regleringen av vattennivån sker då genom att avbörda vatten på ett kontrollerat sätt genom utskoven. Genom att simulera regleringsprocessen av vattennivån i en virtuell miljö kan olika scenarier som kan uppstå vid magasinhantering testas på ett ekonomiskt sätt och hitta lämpliga reglerstrategier. Simuleringar är också en av de verktyg lyft fram inom industri 4.0 vilket kan bidra till framtidens lösningar inom automatiseringsprojekt. I arbetet studeras de olika beståndsdelar i ett vattenkraftverk och en tilltänkt metod presenteras för skapning av en virtuell modell av nivåregleringsprocessen i Siemens SIMIT, styrning av modellen via en virtuell PLC-enhet och visualisering av processen på en HMI-skärm. / Hydropower is an important part of the Swedish electricity supply and meets about 45% of the annual electricity needs in the country. Hydropower uses the height difference between inflow and outflow to power turbines and produces electricity. In Sweden, there are about 200 dams with a drop height greater than 15 m, and too high levels at any of these dams would lead to a dam break with extensive consequences. An important area in which a lot is invested today is dam safety, which is about avoiding uncontrolled flooding of the dam. Knowledge of drop height and water flow is necessary for hydropower to calculate the power produced and when dimensioning dams, waterways, and generators. Saturations on the inflow to a watercourse are very complicated and time-consuming, however, the outflow through the spillway can be calculated with mathematical correlations. Spillways refer to openings in the dam that are used to carry away water volumes. Thus, there are different types of spillways, and what influences the choices are aspects such as cost, weather conditions, etc. To avoid possible flooding of a dam, the spillways are often dimensioned with respect to the amount of water they should carry away. A requirement that is often made is that it must be able to carry away the highest water level (HHQ) of a watercourse. The level in the water reservoir is measured with the help of sensors that are in different places by the dam and measured high levels lead to different alarm functions being triggered. The regulation of the water level then takes place by carrying away water in a controlled manner through the spillway. By simulating the regulation process of the water level in a virtual environment, different scenarios that can arise during reservoir management can be tested in an economical way and find suitable control strategies. Simulations are also one of the tools highlighted in industry 4.0, which can contribute to future solutions in automation projects. In the work, the various components of a hydropower plant are studied, and an intended method is presented for creating a virtual model of the level control process in Siemens SIMIT, controlling the model via a virtual PLC unit and visualizing the process on an HMI screen.
|
2 |
Numerical simulations of flow discharge and behaviours in spillwaysLi, Shicheng January 2021 (has links)
A spillway is an important component of a dam and serves as a flood release structure. It achieves controlled discharge of water and protects the dam from overtopping. The majority of the hydropower dams were built before the 1980s, and many spillways are undersized in light of the present design flood guidelines. Another issue that arises in connection with the high design floods is the energy dissipation capacity. Many existing energy-dissipating arrangements are insufficient or construed only for a design flood standard at the time of dam construction. The increment in the flood discharges requires that the energy dissipation should be improved to obtain sufficient capacity or higher efficiency. In addition, the high-velocity flow is a major concern in the design of spillways. If the flow velocity exceeds approximately 20 m/s, the risk of cavitation may arise. In Sweden, many dams belong to this category. To address these issues, an assessment of their discharge behaviours is required. Innovative engineering solutions for better energy dissipation and cavitation mitigation are also necessary for safe operation. This thesis presents machine learning based methods for discharge estimation. Three data-driven models are developed to study the discharge behaviours of the overflow weirs. Their reliability is validated through the comparison with the experimental and empirical results. These models are capable of giving accurate predictions and show superiority over the conventional approaches. With high accuracy and adaptability, data-driven models are an effective and fast alternative for spillway discharge prediction. This research also focuses on the hydraulic design of stepped spillways, aiming to devise innovative engineering solutions to enhance energy dissipation and reduce cavitation risks. Consequently, several unconventional step layouts are conceived and their hydraulic behaviours are investigated. The modified configurations include steps with chamfers and cavity blockages, non-linear steps and inclined steps. This part attempts to gain insight into the effects of the step geometries on the spillway hydraulics via computational fluid dynamics, which provides references for engineering applications. / Ett utskov är en viktig komponent i en damm och fungerar som ett skydd mot översvämning. Det avbördar vatten på ett kontrollerat sätt och skyddar dammen från överströmning. Majoriteten av vattenkraftsdammarna byggdes före 1980-talet och många utskov är underdimensionerade i förhållande till de nuvarande riktlinjerna för utformning med avseende på dimensionerande flöden. En annan fråga som uppstår i samband med höga flöden är energiomvandlingskapaciteten. Många befintliga arrangemang för reducering omvandling av vattnets rörelseenergi är otillräckliga eller endast anpassade för det dimensionerande flöde som gällde vid tidpunkten för dammens uppförande. En avbördningsökning kräver i sin tur att energiomvandlingsförmågan förbättras för att uppnå tillräcklig kapacitet eller högre effektivitet. Dessutom är höghastighetsflödet ett stort bekymmer vid utformningen av utskov. Om flödeshastigheten överstiger t.ex. 20 m/s uppstår risk för kavitation i vattenvägar. I Sverige hör många dammar till denna kategori. För att lösa dessa problemställningar behöver en utvärdering av avbördningsanordningar göras. Innovativa tekniska lösningar som syftar till effektiv hantering av flödesenergi och kavitationsreducering, vilka utgör nödvändiga förutsättningar för säker drift av anläggningar. Denna uppsats presenterar maskininlärningsbaserade metoder för att prognostisera avbördning i dammar. Tre datadrivna modeller har utvecklats för att studera avbördningsegenskaper hos överfallsdammarna. Deras tillförlitlighet valideras genom jämförelse med experimentella och empiriska resultat. Modellerna kan ge noggrann uppskattning, som kan användas som ett tillförlitligt alternativ för bestämning av avbördning. Forskningen fokuserar också på den hydrauliska utformningen av stegade bräddavlopp (s.k. stepped spillway), i syfte att utveckla innovativa tekniska lösningar för att åstadkomma hög energiförlust och minska kavitationsrisker. Flera okonventionella stegformade geometrier föreslås och deras hydrauliska egenskaper undersöks. Denna del syftar till att, via numerisk simulering, ge en inblick i vilka effekter olika steggeometrier har på avbördningshydrauliken, vilken tillhandahåller referens för tekniska applikationer. / <p>QC 20210205</p>
|
Page generated in 0.03 seconds