• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 549
  • 435
  • 96
  • 95
  • 50
  • 27
  • 19
  • 10
  • 8
  • 8
  • 6
  • 5
  • 4
  • 4
  • 4
  • Tagged with
  • 1658
  • 299
  • 195
  • 182
  • 151
  • 150
  • 129
  • 114
  • 113
  • 107
  • 101
  • 99
  • 95
  • 94
  • 93
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Harnessing Oncolytic Virus-mediated Anti-tumour Immunity

Lemay, Chantal 25 September 2012 (has links)
Treatment of permissive tumours with the oncolytic virus (OV) VSV-Δ51 leads to a robust anti-tumour T cell response, which contributes to efficacy; however, many tumours are not permissive to in vivo treatment with VSV-Δ51. In an attempt to channel the immune stimulatory properties of VSV-Δ51 and broaden the scope of tumours that can be treated by an OV, a potent oncolytic vaccine platform was developed, consisting of tumour cells infected with VSV-Δ51. I demonstrate that prophylactic immunization with this infected cell vaccine (ICV) protected mice from subsequent tumour challenge, and expression of GM-CSF by the virus (VSVgm-ICV) increased efficacy. Immunization with VSVgm-ICV in the VSV-resistant B16-F10 model induced maturation of dendritic cells, natural killer (NK) cells, and T cells. I demonstrate that this approach is robust enough to control the growth of established and spontaneous tumours. This strategy is broadly applicable because of VSV’s extremely broad tropism, allowing nearly all cell types to be infected at high MOIs in vitro, where the virus replication kinetics outpace the cellular IFN response. It is also personalized to the unique tumour antigen(s) displayed by the cancer cell. Histone deacetylase inhibitors (HDIs) can augment viral replication, making them particularly interesting complements to OV therapy. However, the impact of HDIs on the generation and re-stimulation of immune responses remains to be clearly elucidated. Along with my collaborators at McMaster University, I demonstrate that MS-275, but not SAHA, selectively depletes naïve and regulatory lymphocytes. Memory lymphocytes that are being boosted remain unscathed and even have enhanced cytokine production, potentially as a consequence of the depleted lymphocyte compartment. This leads to a delay in anti-VSV neutralizing antibodies and T cell responses. Interestingly, HDI treatment of B16-F10 cells appears to inhibit VSV replication but allows for a longer persistence within the tumour. When used in an oncolytic prime/boost vaccination model, MS-275 potently enhanced survival. Though the anti-tumour immune response is enhanced, a near complete reduction in autoimmune vitiligo is observed with MS-275 administration. Therefore, this HDI uniquely modulates the immune response to enhance anti-tumour immunity and decrease the anti-viral response, while also decreasing autoimmune sequelae.
132

Biochemical and immunological characteristics of Pasteurella multocida type A strains isolated from bovine pneumonia

Abdullahi, M. Z. January 1987 (has links)
No description available.
133

Immunomodulatory Effects of Probiotic and Anticoccidial Treatments in Broiler Chickens

Stringfellow, Kendre 2012 August 1900 (has links)
Four experiments evaluated the impact of probiotic administration on the immune response of broilers vaccinated with a live coccidiosis vaccine. Experiment one showed that probiotic administration increased heterophil and monocyte oxidative burst, and lymphocyte proliferation at multiple time points. In experiment two, probiotic + vaccine increased heterophil and monocyte oxidative burst on d 15 when compared with the negative controls. Overall, vaccine administration alone showed the highest response when compared to all other treatments. In the second trial, all birds were exposed to Eimeria oocysts in the litter and oral gavaged. The results showed that probiotic + vaccine resulted in greater heterophil and monocyte oxidative burst levels on d 14 and 28 when compared to the negative controls. Increases in lymphocyte proliferation were also seen in the probiotic + vaccine and probiotic alone broilers on d 14 among other treatments. In experiment three, heterophil oxidative burst was increased (p <= 0.05) in the vaccine alone group, vaccine with probiotic group, and the ionophore with probiotic group, when compared to the negative control. Monocyte oxidative burst was increased (p <= 0.05) in the vaccine with probiotic group on d 36 and 43, compared to the negative control. Lymphocyte proliferation was greater (p <= 0.05) on d 22 and 36 in the ionophore with probiotic group, when compared to the negative control. Experiment four showed that liver AVBD 2 gene expression elevated (p <= 0.05) in the probiotic + vaccine group relative to the probiotic alone group. Ileum AVBD 2 gene expression was not affected among any of the treatments was evaluated. Liver AVBD 9 was demonstrated to have higher (p <= 0.05) gene expression in the vaccine group when compared to controls. When AVBD 9 gene expression was evaluated in the ileum, a decrease (p <= 0.05) was observed in all treatments compared to the control group. These data suggest that simultaneous administration of probiotics during coccidiosis vaccination or ionophore treatment has the ability to modulate the immune response at varying time points.
134

Development of a Novel Methodology for the Delivery of DNA Vaccines using the Herpesvirus Protein VP22

Kerri Clark Unknown Date (has links)
Bovine herpesvirus-1 (BoHV-1) is associated with the syndrome bovine respiratory disease, which is the major cause of morbidity and mortality within feedlots in Australia and around the world. Currently there are no vaccines that completely prevent BoHV-1 infections and viral shedding. The most efficacious vaccines used are live attenuated which have the potential to revert to wild type and cause disease. DNA vaccines are ideal vaccine candidates as they not only induce humoral and cellular immunity, they are also inexpensive and easy to produce. However, DNA vaccines although efficacious in small animal models have not yielded similar success in large animals. The inconsistent translation of DNA vaccines to large animal models, including cattle, has been associated with poor delivery of the vaccine to the nuclei of cells which is required for antigen transcription. Recently, the human herpesvirus-1 protein VP22 (hVP22) was demonstrated to exhibit the uncommon capacity to spread intercellularly from the cell of expression to the nuclei of neighbouring cells in a golgi and energy independent process. This process was very efficient with hVP22 being identified in all cells of a monolayer after transfection. hVP22 was quickly used to promote the efficiency of DNA vaccines by fusing the hVP22 gene with antigen genes in the vaccine resulting in the increased delivery of the antigenic protein to neighbouring cells. The fusion protein was subsequently degraded and presented as peptides on the cell surface in association with major histocompatibility complex (MHC) class II molecules that lead to an increase in fusion protein specific antibody production. This pathway, although successful augmenting the humoral response, did not increase the amount of antigen presented on MHC class I molecules which is essential for protection against intracellular pathogens. This thesis describes the development of a methodology whereby VP22, fused to a DNA binding protein, was hypothesised to increase the number of cells the DNA vaccine was delivered to and then to facilitate the transport of the DNA vaccine to their nuclei. A homologue of hVP22 has been identified in BoHV-1 and the capacity of the BoHV-1 protein to spread intercellularly and localise in the nuclei of cells was determined in this thesis using a novel and definitive model. Although retaining similar translocation capabilities to hVP22 the BoHV-1 VP22 homologue could not be expressed in bacteria and was subsequently not able to be used to demonstrate the proposed vaccine concept. hVP22 instead was fused to the DNA binding protein, Gal4, for bacterial expression. The purified fusion protein was demonstrated to bind not only oligonucleotides encoding the Gal4 binding sequence but also to a model DNA vaccine encoding Gal4 binding sequences in vitro. However, application of the hVP22 fusion protein:vaccine complex alone or condensed with poly-L-lysine to mammalian cells did not promote the delivery of the DNA vaccine to the nuclei of cells. As part of the DNA vaccine development for BoHV-1 the first nucleotide sequence of the Unique Short region of the Australian BoHV-1 strain V155 (8925 nucleotides) was determined. The sequence information generated permitted insights into epitopes contained within BoHV-1 antigens, particularly glycoprotein D which has been identified as the most appropriate glycoprotein for the purpose of vaccination. Furthermore, comparison of the Unique Short sequence variations between different subtypes of BoHV-1 provided molecular data that may be associated with the observed variation in virulence. Further optimisation of the methodology described in this study is required to facilitate the delivery of the DNA vaccine into cells by the VP22 fusion protein. The future development of strategies that utilise polypeptides to augment delivery of DNA vaccines into cells and then to facilitate the transport of the vaccine to the nuclei of cells, resulting in increased antigen expression, may ultimately lead to the successful application of this vaccine technology in animal models.
135

Insights into the design of an improved PfRH5 malaria immunogen using vaccine-induced monoclonal antibodies

Alanine, Daniel G. W. January 2017 (has links)
The causative agent of the most deadly form of malaria, P. falciparum, was identified over 130 years ago, yet this disease still causes 430,000 deaths each year. Although naturally-acquired immunity exists, it requires a heavy and sustained exposure to the parasite, with most succumbing as young children, before this immunity has fully developed. Effective treatments exist but with small-molecule drug resistance on the rise and little in the way of affordable alternatives, the need for an efficacious malaria vaccine is as great as ever. A successful malaria vaccine is likely to necessitate targeting each stage of the parasite's lifecycle. Immunity directed to the blood-stage, the stage which causes all the symptoms of malaria, is unique in that it would allow for a concomitant development of naturally-acquired immunity along with a reduction in morbidity and mortality. To date, antibody-mediated immunity to the blood stage requires intractably high levels of antibody and this problem is compounded by a paucity of viable candidates with which to effectively target different strains. Other fields of vaccinology, over the past decade, have been employing various structure-based strategies to increase the specific activity of the immune response thus lowering the antibody levels required for protection. However, very few detailed investigations of this kind have been conducted on a P. falciparum vaccine candidate, and certainly none as promising as PfRH5. In a world's first, fully-human antibodies raised in response to PfRH5 vaccination were isolated and extensively characterised, both functionally and structurally with the intention of elucidating the important features necessary to inform the design of an improved PfRH5-based vaccine. Synergistic and antagonistic effects of antibody combinations were noted and highlight new complexities of the immune response to PfRH5, opening the door to unanticipated potential for rational vaccine design.
136

Civil-military relations and the anthrax vaccine debate

Martel, Christine January 2002 (has links)
Boston University. University Professors Program Senior theses. / PLEASE NOTE: Boston University Libraries did not receive an Authorization To Manage form for this thesis. It is therefore not openly accessible, though it may be available by request. If you are the author or principal advisor of this work and would like to request open access for it, please contact us at open-help@bu.edu. Thank you. / 2031-01-02
137

Creation and evaluation of an informational website about the influenza vaccination

Luchsinger, Rebecca January 2011 (has links)
Class of 2011 Abstract / OBJECTIVES: The purpose of this study was to create and evaluate the usability and credibility of an informational website about the influenza vaccination. METHODS: This was a descriptive study of user’s reactions to a website. Questionnaires administered during a regularly scheduled class collected ratings of the usability and credibility of an informational website about the influenza vaccination; data on vaccination status, year in pharmacy school and plans for future vaccination were also collected. RESULTS: Questionnaires were completed by 8 students. Eighty-eight percent of participants were in their 3rd year of pharmacy school and 62% received the influenza vaccination in the past season. Only one participant had used the internet to access information about vaccines in the past. The means scores for the 9 usability and credibility statements were between 2 to 2.9 indicating agreement with the statements. CONCLUSION: The influenza website is easy to navigate and provides a source of credible information about the influenza vaccination.
138

Harnessing Oncolytic Virus-mediated Anti-tumour Immunity

Lemay, Chantal January 2012 (has links)
Treatment of permissive tumours with the oncolytic virus (OV) VSV-Δ51 leads to a robust anti-tumour T cell response, which contributes to efficacy; however, many tumours are not permissive to in vivo treatment with VSV-Δ51. In an attempt to channel the immune stimulatory properties of VSV-Δ51 and broaden the scope of tumours that can be treated by an OV, a potent oncolytic vaccine platform was developed, consisting of tumour cells infected with VSV-Δ51. I demonstrate that prophylactic immunization with this infected cell vaccine (ICV) protected mice from subsequent tumour challenge, and expression of GM-CSF by the virus (VSVgm-ICV) increased efficacy. Immunization with VSVgm-ICV in the VSV-resistant B16-F10 model induced maturation of dendritic cells, natural killer (NK) cells, and T cells. I demonstrate that this approach is robust enough to control the growth of established and spontaneous tumours. This strategy is broadly applicable because of VSV’s extremely broad tropism, allowing nearly all cell types to be infected at high MOIs in vitro, where the virus replication kinetics outpace the cellular IFN response. It is also personalized to the unique tumour antigen(s) displayed by the cancer cell. Histone deacetylase inhibitors (HDIs) can augment viral replication, making them particularly interesting complements to OV therapy. However, the impact of HDIs on the generation and re-stimulation of immune responses remains to be clearly elucidated. Along with my collaborators at McMaster University, I demonstrate that MS-275, but not SAHA, selectively depletes naïve and regulatory lymphocytes. Memory lymphocytes that are being boosted remain unscathed and even have enhanced cytokine production, potentially as a consequence of the depleted lymphocyte compartment. This leads to a delay in anti-VSV neutralizing antibodies and T cell responses. Interestingly, HDI treatment of B16-F10 cells appears to inhibit VSV replication but allows for a longer persistence within the tumour. When used in an oncolytic prime/boost vaccination model, MS-275 potently enhanced survival. Though the anti-tumour immune response is enhanced, a near complete reduction in autoimmune vitiligo is observed with MS-275 administration. Therefore, this HDI uniquely modulates the immune response to enhance anti-tumour immunity and decrease the anti-viral response, while also decreasing autoimmune sequelae.
139

Effectiveness of a Vaccination Education Module for College Freshman

Behunin, Gavin Robert 17 June 2021 (has links)
The purpose of this thesis is to evaluate a vaccination education module and evaluate its effectiveness to improve vaccine beliefs and behaviors among college freshmen. The participants included 177 college freshmen at one Utah university. Participants were eligible for this study if admitted as a new freshman during the 2019-2020 school year. The study was a cross-sectional pre- and post-education evaluation assessing vaccine beliefs and behaviors using a Likert-type scale. After completing the vaccination education module, participants' vaccine beliefs and behavioral intentions improved. Participants reported they were more likely to be up-to-date on personal vaccines and more likely to expect other students to be up-to-date on their vaccinations. Participants were more likely to ask other students to vaccinate and were also more likely to ask their family members to be vaccinated. In conclusion this online vaccination education module effectively improved participants' vaccine beliefs and behavioral intentions.
140

Biodegradable microparticles as a single dose delivery system for Ehrlichia ruminantium vaccines

Tshikhudo, Ndavheleseni Phanuel 17 February 2010 (has links)
Four 1H12 E. ruminantium open reading frames cloned into the pCMViUBs mammalian expression vector and used as a recombinant DNA vaccine against heartwater repeatedly provided complete protection in sheep (using a cocktail or the individual ORFs) against a laboratory needle challenge while 1/5 of sheep were protected after a natural tick challenge. The lack of protection under natural field conditions could be attributed to the delivery strategy used and therefore there is a need to investigate other delivery methods. Polymeric microparticles based on PLGA polymers have been used extensively to target the delivery of vaccine to antigen presenting cells, play a role in the induction of cellular immunity and can be used as a single dose vaccine mimicking prime/boost vaccination. In this study, the four 1H12 pCMViUBs_ORFs and their respective recombinant proteins were either encapsulated into or adsorbed onto microparticles using a modified double emulsion solvent evaporation technique. The particles were formulated to release DNA on day zero and day 21 and recombinant proteins on day 42 thus mimicking a two times DNA prime/recombinant protein-boost immunization strategy. Encapsulation did not have any detrimental effects on the stability of the recombinant proteins as determined by gel electrophoresis and western blotting. The in vitro incubation of microparticles in either a Float-A-Lyzer® dialyzer or an eppendorf tube showed the potential of microparticles to be used as a vaccine because of their release profiles that mimics a heterologous prime/boost immunization strategy. Microparticles formulated using polymers with low glycolide ratios released 80% of the encapsulated proteins within the first week of in vitro incubation with most of the proteins released on day 1. Microparticles formulated using polymers with 50:50 monomer ratios released the recombinant proteins during week 1 and 3 of in vitro incubation. These microparticles did not release any protein in week 2 (day 7-14). Microparticles with 0.5% cetyltrimethylammonium bromide (CTAB) on their surfaces adsorbed DNA and released more than 40% of DNA on day 1 with 100% release by day 14. RG502H microparticles formed with PVA as the internal phase viscosity enhancer released intact DNA only from day 12 to day 21. A cocktail of these microparticles could therefore be used as an autobooster vaccine thus reducing the need for repeated immunizations needed to obtain protective immunity. Potential scientific publication Tshikhudo, N.P., Pretorius, A., Putterill, J., and van Kleef, M. 2009, “Biodegradable microparticles as a single dose delivery system for Ehrlichia ruminantium vaccines”, Journal of Controlled Release, (draft manuscript). Publication of results in conference proceedings / abstracts NanoAfrica 2009: Biodegradable microspheres as a single dose delivery system for Ehrlichia ruminantium vaccines: N. Tshikhudo, A. Pretorius, J. Putterill and M. van Kleef. / Dissertation (MSc)--University of Pretoria, 2009. / Veterinary Tropical Diseases / unrestricted

Page generated in 0.0435 seconds