• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 12
  • 6
  • 5
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 63
  • 28
  • 18
  • 10
  • 10
  • 9
  • 9
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Targeting acute phosphatase PTEN inhibition and investigation of a novel combination treatment with Schwann cell transplantation to promote spinal cord injury repair in rats

Walker, Chandler L. 02 April 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Human traumatic spinal cord injuries (SCI) are primarily incomplete contusion or compression injuries at the cervical spinal level, causing immediate local tissue damage and a range of potential functional deficits. Secondary damage exacerbates initial mechanical trauma and contributes to function loss through delayed cell death mechanisms such as apoptosis and autophagy. As such, understanding the dynamics of cervical SCI and related intracellular signaling and death mechanisms is essential. Through behavior, Western blot, and histological analyses, alterations in phosphatase and tensin homolog (PTEN)/phosphatidylinositol-3-kinase (PI3K) signaling and the neuroprotective, functional, and mechanistic effects of administering the protein tyrosine phosphatase (PTP) inhibitor, potassium bisperoxo (picolinato) vanadium ([bpV[pic]) were analyzed following cervical spinal cord injury in rats. Furthermore, these studies investigated the combination of subacute Schwann cell transplantation with acute bpV(pic) treatment to identify any potential additive or synergistic benefits. Although spinal SC transplantation is well-studied, its use in combination with other therapies is necessary to complement its known protective and growth promoting characteristics. v The results showed 400 μg/kg/day bpV(pic) promoted significant tissue sparing, lesion reduction, and recovery of forelimb function post-SCI. To further clarify the mechanism of action of bpV(pic) on spinal neurons, we treated injured spinal neurons in vitro with 100 nM bpV(pic) and confirmed its neurprotection and action through inhibition of PTEN and promotion of PI3K/Akt/mammalian target of rapamycin (mTOR) signaling. Following bpV(pic) treatment and green fluorescent protein (GFP)-SC transplantation, similar results in neuroprotective benefits were observed. GFP-SCs alone exhibited less robust effects in this regard, but promoted significant ingrowth of axons, as well as vasculature, over 10 weeks post-transplantation. All treatments showed similar effects in forelimb function recovery, although the bpV and combination treatments were the only to show statistical significance over non-treated injury. In the following chapters, the research presented contributes further understanding of cellular responses following cervical hemi-contusion SCI, and the beneficial effects of bpV(pic) and SC transplantation therapies alone and in combination. In conclusion, this work provides a thorough overview of pathology and cell- and signal-specific mechanisms of survival and repair in a clinically relevant rodent SCI model.
62

The role of acid sphingomyelinase in autophagy

Justice, Matthew Jose 11 July 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Autophagy is a conserved cellular process that involves sequestration and degradation of cytosolic contents. The cell can engulf autophagic cargo (lipids, long-lived proteins, protein aggregates, and pathogens) through a double bound membrane called an autophagosome that fuses with a lysosome where hydrolases then degrade these contents. This process is one of the main defenses against starvation and is imperative for newborns at birth. Research on this process has increased exponentially in the last decade since its discovery almost a half a century ago. It has been found that autophagy is an important process in many diseases, continues to be at the forefront of research, and is clearly not fully understood. Our preliminary cell culture data in endothelial and epithelial cells show that a blockade of the de novo ceramide synthesis pathway, during treatment with an autophagy stimulus (cigarette smoke extract exposure), does not result in any reduction in autophagy or autophagic flux. Conversely, when acid sphingomyelinase (ASM) is pharmacologically inhibited, which prevents the generation of ceramide from sphingomyelin in an acidic environment, a profound increase in autophagy is observed. In this work, we hypothesize that (ASM) is an endogenous inhibitor of autophagy. ASM has two forms, a secreted form and a lysosomal form. N-terminal processing in the Golgi determines its cellular fate. In the lysosomal form, the phosphodiesterase is bound in the lysosomal membrane. The pharmacological inhibition mechanism is to release ASM from the membrane and allow other hydrolases to actively degrade the enzyme which, in turn, decreases the activity of ASM. This suggests that either the activity of ASM is a regulator of autophagy or that the presence of ASM, activity aside, is required for the lysosomal nutrient sensing machinery (LYNUS) to function properly. Here, we show that ASM is, in fact, an endogenous inhibitor of autophagy in vitro. The phosphorylation status of P70 S6k, a downstream effector of mammalian target of rapamycin (mTOR), which is part of the LYNUS, shows that dissociation of ASM from the membrane regulates mTOR and disturbs the LYNUS in such a manner as to signal autophagy.
63

Lafora Disease: Mechanisms Involved in Pathogenesis

Garyali, Punitee January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Lafora disease is a neurodegenerative disorder caused by mutations in either the EPM2A or the EPM2B gene that encode a glycogen phosphatase, laforin and an E3 ubiquitin ligase, malin, respectively. A hallmark of the disease is accumulation of insoluble, poorly branched, hyperphosphorylated glycogen in brain, muscle and heart. The laforin-malin complex has been proposed to play a role in the regulation of glycogen metabolism and protein degradation/quality control. We evaluated three arms of protein quality control (the autophagolysosomal pathway, the ubiquitin-proteasomal pathway, and ER stress response) in embryonic fibroblasts from Epm2a-/-, Epm2b-/- and Epm2a-/- Epm2b-/- mice. There was an mTOR-dependent impairment in autophagy, decreased proteasomal activity but an uncompromised ER stress response in the knockout cells. These defects may be secondary to the glycogen overaccumulation. The absence of malin, but not laforin, decreased the level of LAMP1, a marker of lysosomes, suggesting a malin function independent of laforin, possibly in lysosomal biogenesis and/or lysosomal glycogen disposal. To understand the physiological role of malin, an unbiased diGly proteomics approach was developed to search for malin substrates. Ubiquitin forms an isopeptide bond with lysine of the protein upon ubiquitination. Proteolysis by trypsin cleaves the C-terminal Arg-Gly-Gly residues in ubiquitin and yields a diGly remnant on the peptides. These diGly peptides were immunoaffinity purified using anti-diGly antibody and then analyzed by mass spectrometry. The mouse skeletal muscle ubiquitylome was studied using diGly proteomics and we identified 244 nonredundant ubiquitination sites in 142 proteins. An approach for differential dimethyl labeling of proteins with diGly immunoaffinity purification was also developed. diGly peptides from skeletal muscle of wild type and Epm2b-/- mice were immunoaffinity purified followed by differential dimethyl labeling and analyzed by mass spectrometry. About 70 proteins were identified that were present in the wild type and absent in the Epm2b-/- muscle tissue. The initial results identified 14 proteins as potential malin substrates, which would need validation in future studies.

Page generated in 0.0466 seconds