171 |
Investmentföretagens risktagande : En fallstudie på Industrivärden och SvolderSjögren, Michael, Brink, Daniel January 2012 (has links)
Investmentföretag har funnits sedan urminnes tider men har under senare år ofta fått stå tillbaka som investeringsalternativ till fördel för aktiefonder. Detta är lite motsägelsefullt då svenska investmentföretagen historiskt har haft en högre avkastning än den svenska aktiefondförvaltaren. Större delen av forskningen kring investmentföretag har fokuserat på substansrabatten. Vi fann väldigt få studier som berört investmentföretagens risktagande, speciellt ur ett portföljperspektiv. För att underlätta för den individuella investeraren ville vi använda ett riskmått som är lätt att förstå. Valet föll därför på Value at Risk (VaR) som vi anser ger ett lättförståeligt mått på risken i en portfölj samtidigt som det valideras genom Basel II. Då investmentföretagen är väldigt heterogena med avseende på deras portföljsammansättningar och investeringsstrategier valde vi att genomföra en fallstudie på Industrivärden och Svolder. Valet av dessa företag möjliggjorde också en jämförelse mellan ett större och mindre investmentföretag. Vi ville undersöka och jämföra hur deras risktagande påverkas och förklaras utifrån olika faktorer, med utgångspunkt från den tidigare omkringliggande forskningen. De teoretiska utgångspunkterna hämtades från fyra olika områden, risk och portföljvalsteori, Behavioural Finance, Corporate Governance och makroekonomisk statistik. Vi valde att genomföra en kvantitativ studie för att undersöka Industrivärdens och Svolders risktagande. Studien är baserad på investmentföretagens kvartalsrapporter mellan 2000 till 2011. Utifrån vår referensram definierade vi 13 olika variabler som statistiskt prövades mot risktagandet med hjälp av multipla regressioner. Från våra resultat kunde vi konstatera att den makroekonomiska statistiken förklarade mest av investmentföretagens risktagande. Gemensamt för båda investmentföretagen var att industriproduktionen, Fed fund rate och konjunkturbarometern visade på ett signifikant samband med risktagande. Vi fann även indikationer på att den geografiska exponeringen för deras portföljer hade betydelse för att förklara risktagandet. Vår studie pekade också på att investmentföretagens risktagande visade upp en trend och korrelerade negativt med börsmarknaden.
|
172 |
Volatility forecasting in the Swedish hedge fund market : A comparison of downside-risk between Swedish hedge funds and the index S&P Europe 350Harding, Donald January 2012 (has links)
The purpose of this thesis is to examine whether Swedish Equity L/S hedge funds present a lower market risk than the index S&P Europe 350 over our holding period using a GARCH/EGARCH Value-at-Risk model. The sample consists of 96 monthly observa- tions between March 2004 and February 2012. The examination shows that the hedge funds in general hold a lower market risk than the index for the next holding period and al- so present a lower estimated loss if our VaR loss is exceeded. This implies that hedge funds would be a good choice for investors to have in a portfolio to reduce the risk.
|
173 |
FORECASTING FOREIGN EXCHANGE VOLATILITY FOR VALUE AT RISK : CAN REALIZED VOLATILITY OUTPERFORM GARCH PREDICTIONS?Fallman, David, Wirf, Jens January 2011 (has links)
In this paper we use model-free estimates of daily exchange rate volatilities employing high-frequency intraday data, known as Realized Volatility, which is then forecasted with ARMA-models and used to produce one-day-ahead Value-at-Risk predictions. The forecasting accuracy of the method is contrasted against the more widely used ARCH-models based on daily squared returns. Our results indicate that the ARCH-models tend to underestimate the Value-at-Risk in foreign exchange markets compared to models using Realized Volatility
|
174 |
Evaluating VaR with the ARCH/GARCH FamilyEnocksson, David, Skoog, Joakim January 2012 (has links)
The aim of the thesis is to identify an appropriate model in forecasting Value-at-Risk on a morevolatile period than that one from which the model is estimated. We estimate 1-day-ahead and10-days-ahead Value-at-Risk on a number of exchange rates. The Value-at-Risk estimates arebased on three models combined with three distributional assumptions of the innovations, andthe evaluations are made with Kupiec's (1995) test for unconditional coverage. The data rangesfrom January 1st 2006 through June 30th 2011. The results suggest that the GARCH(1,1) andGJR-GARCH(1,1) with normally distributed innovations are models adequately capturing theconditional variance in the series.
|
175 |
Managing Commodity Risks in Highway Contracts: Quantifying Premiums, Accounting for Correlations Among Risk Factors, and Designing Optimal Price-Adjustment ContractsZhou, Xue 2011 December 1900 (has links)
It is a well-known fact that macro-economic conditions, such as prices of commodities (e.g. oil, cement and steel) affect the cost of construction projects. In a volatile market environment, highway agencies often pass such risk to contractors using fixed-price contracts. In turn, the contractors respond by adding premiums in bid prices. If the contractors overprice the risk, the price of fixed-price contract could exceed the price of the contract with adjustment clauses. Consequently, highway agencies have the opportunity to design a contract that not only reduces the future risk of exposure, but also reduces the initial contract price.
The main goal of this dissertation is to investigate the impact of commodity price risk on construction cost and the optimal risk hedging of such risks using price adjustment clauses. More specifically, the objective of the dissertation is to develop models that can help highway agencies manage commodity price risks. In this dissertation, a weighted least square regression model is used to estimate the risk premium; both univariate and vector time series models are estimated and applied to simulate changes in commodity prices over time, including the effect of correlation; while the genetic algorithm is used as a solution approach to a multi-objective optimization formulation. The data set used in this dissertation consists of TxDOT bidding data, market-based data including New York Mercantile Exchange (NYMEX) future options data, and Engineering News-Record (ENR) material cost index data. The results of this dissertation suggest that the optimal risk mitigation actions are conditional on owners' risk preferences, correlation among the prices of commodities, and volatility of the market.
|
176 |
A Comparation Analysis on the Risk Model for Portfolio that Contains Equity DerivativesLin, Wan-Chun 23 June 2004 (has links)
none
|
177 |
Optimal Dynamic Asset Allocation and Optimal Insurance Design under Value at Risk ConstraintWang, Ching-ping 29 July 2005 (has links)
This dissertation includes two topics. The first topic focuses on the problem of investor optimization of dynamic asset allocation to maximize expected utility under the value at risk (VaR) constraint. Different to previous researches, this study considers a common realistic case where the VaR horizon is equal to the whole investment horizon without a complete market constraint. Since the problem cannot be solved using the standard dynamic programming method or the martingale method, this study particularly provides an algorithm to solve this difficult problem. Similar to the mean-variance frontier suggested by Markowitz (1952), this study draws the frontiers of dynamic and static asset allocations under the VaR constraint. The analytical results clearly show that the dynamic asset allocations are more efficient than the static asset allocations.
The second topic designs an optimal insurance policy form endogenously, assuming the objective of the insured is to maximize expected final wealth under the VaR constraint. The optimal insurance policy can be replicated using three options, including a long call option with a small strike price, a short call option with a large strike price, and a short cash-or-nothing call option. Moreover, expected wealth is increasing and concave in VaR and in significance level. Finally, Mean-VaR Frontiers are drawn, and reveal that the optimal insurance is more efficient than alternative insurance forms.
|
178 |
Computing VaR via Nonlinear AR model with heavy tailed innovationsLi, Ling-Fung 28 June 2001 (has links)
Many financial time series show heavy tail behavior. Such tail characteristic is important for risk management.
In this research, we focus on the calculation of Value-at-Risk (VaR) for portfolios of financial assets. We consider nonlinear autoregressive models with heavy tail innovations to model the return.
Predictive distribution of the return are used to compute the VaR of the portfolios of financial assets.
Examples are also given to compare the VaR computed by our approach with those by other methods.
|
179 |
A study on the performance evaluation of financial holding companyKuo, Chen-Ling 19 August 2002 (has links)
none
|
180 |
The Application Of VaR In Taiwan Property And Casualty Insurance Industry And Influence Factor Of Underwriting Risk ResearchLiu, Cheng-chung 02 July 2008 (has links)
Abstract
In these years, Value at Risk (VaR) has been an important tool of risk management in the bank industry. In the past, property and casualty insurance industry does not have many correlation research in this aspect, especially in the key of the underwriting risk application may be collection difficulty in data , the domestic correlation research literature were actually few. In this paper, we use TEJ data bank to study the statistical data which needs for the research , the research sample total has 9 property insurance companies, By using the public information of TEJ data bank, it obtains the yearly and quarterly data, and uses the ¡§Fuzzy Distance Weighting Method¡¨ to change the quarterly data into monthly data , calculates loss ratio of the yearly, quarterly, monthly, then use the idea of VaR to compare the different of loss ratio-at-risk in yearly, quarterly, monthly¡CMoreover this study discusses the underwriting risk influence factor of domestic property and casualty insurance industry .This research discovers that yearly data will underestimate the actual of loss ratio at risk . In addition using regression analysis, the underwriting loss ratio-at- risk is influenced by free cash flow , leverage ratio , and firm size. According to the result of this paper, it could provide the reference rule when property and casualty insurance industry or supervisory authority set up the risk management rule.
Keywords: Value at risk, Loss ratio, Loss ratio-at-risk, Underwriting risk
|
Page generated in 0.0495 seconds