Spelling suggestions: "subject:"van genuchten"" "subject:"van besuchten""
1 |
Soil Behavior during Freeze-Thaw Processes at a Snow-Dominated Forest Site Simulated with the Physically-Based Numerical Water Flow and Heat Transport Soil in Cold Regions Model (SCRM)Balocchi, Francisco, Balocchi, Francisco January 2016 (has links)
The freeze-thaw process controls several hydrologic processes including infiltration, runoff, and soil erosion. Simulating this process is important particularly in cold and mountainous regions. The Soil and Cold Regions Model (SCRM) was used to simulate, study, and understand the behavior of 12 homogenous soils, subject to a freeze-thaw process based on meteorological data at a snow dominated forest site in Laramie, WY, from 2010 and 2012. To complete a simulation, which accounts for all three phases of water (liquid, vapor, and ice), the model requires meteorological data, canopy characteristics, soil physical properties including the van Genuchten-Mualem parameters, and the initial state of the soil profile. Different model conditions were applied included the relationship between soil pore size, soil particle contact, soil thermal conductivities, soil ice/water content, snow cover, and meteorological data. Analysis of the simulations used metrics such as soil frost depth, days with ice, and maximum ice content. The results showed a threshold in snow depth ranging from 20 to 40 cm to fully insulate the soil from the atmosphere. Additionally, the model showed that the freeze-thaw process was strongest in the period with a shallow snow pack and that particle packing within the soil profile was an important factor in this process. Soil texture and water content controlled soil thermal properties. Water movement towards the freezing front was especially important in fine textured soils, where water and ice was concentrated in the upper layers. In coarser textured soil, frost also occurs, but not to the same extent. Based on these results, future research that combines a broader set of soil conditions with an extended set of field meteorology data could elucidate how soil texture controls thermal properties related to soil frost.
|
2 |
Condutividade hidráulica do solo a partir da curva de retenção de laboratório e de campo / Soil hydraulic conductivity from laboratory and field soil-water retention curveRebouças, Cezar Augusto Medeiros 25 August 2016 (has links)
Os métodos indiretos de determinação da condutividade hidráulica do solo em função do conteúdo de água no solo apresentam relevante vantagem pela redução de tempo e custo. No entanto, quando são comparados aos métodos de determinação em campo, seus valores não satisfazem as reais condições. Assim, com este trabalho, objetivou-se comparar resultados da condutividade hidráulica pelo modelo de van Genuchten a partir da curva de retenção, CRA, determinada no laboratório e em campo, assim como indicar a melhor maneira de estimar o conteúdo de água no solo a partir de leituras tensiométricas quando se usa a CRA no método do perfil instantâneo, MPI. O experimento foi conduzido em quatro profundidades de um Latossolo e de um Nitossolo, que correspondiam aos seus respectivos horizontes pedológicos. Para confecção da CRA em campo, foi instalado, no centro de cada horizonte, um tensiômetro com manômetro de mercúrio, para determinação da tensão da água, e coletadas, de cada profundidade, amostras de solo com estrutura deformada às tensões de 2, 4, 6, 8, 10, 20, 30, 40 e 50 kPa, para determinação do conteúdo gravimétrico de água; foram retiradas também, de cada profundidade, amostras com estrutura indeformada, por meio de um extrator do tipo Uhland, para determinação da densidade do solo, necessária para conversão dos dados para conteúdo volumétrico de água. Para a CRA em laboratório foram coletadas amostras de solo com estrutura indeformada também por meio de extrator do tipo Uhland. As amostras foram submetidas às tensões de 2, 4, 6, 8 e 10 kPa em funis de placa porosa, e para as tensões de 33, 50, 100, 300, 600, 900, 1.200 e 1.500 kPa em câmara de pressão com placa porosa. Todas as amostras foram coletadas em triplicata. Por fim, procedeu-se com os cálculos da condutividade hidráulica pelo modelo de van Genuchten. De acordo com os resultados obtidos, pode-se concluir que: (a) a metodologia de determinação da CRA no campo mostrou-se satisfatória, assim como o seu ajuste pela equação utilizada por van Genuchten no seu método de determinação da condutividade hidráulica relativa, Kr, com coeficientes de determinação sempre maiores que 0,9; (b) os valores da Kr obtidos pelo método de van Genuchten quando se utilizou a CRA de laboratório foram sempre maiores em relação aos valores obtidos com a CRA determinada no campo; e (c) no MPI há necessidade de se conhecer o conteúdo de água no solo ao longo do perfil durante o processo de redistribuição da água, e uma das maneiras de se obter esse conteúdo é por meio da CRA; com base nos resultados obtidos e em face à primeira conclusão, pode-se dizer que quando se utiliza a CRA para estimar o conteúdo de água pelo MPI, a utilização da CRA determinada no campo deve fornecer resultados mais realísticos da função K(θ). / The use of indirect methods to determine the soil hydraulic conductivity as a function of soil-water content is very advantageous because of the reduction of time and cost. However, when compared with field methods, values do not satisfy the actual conditions. So, the objective this work was to compare results of hydraulic conductivity by van Genuchten\'s model from the water retention curve, WRC, determined in the laboratory and in the field, well as indicate the better way to estimate the soil-water content from tensiometer readings using WRC, in the instantaneous profile method, IPM. The experiment was carried out in four depths of an Oxisol and a Nitosol, corresponding to their pedological horizons. To obtain the field WRC, a mercury manometer tensiometer was installed in the centre of each horizon, for the determination of the soil-water tension, and disturbed soil samples were collected at tensions of 2, 4, 6, 8, 10, 20, 30, 40 and 50 kPa, to determinate the gravimetric soil-water content; undisturbed soil samples were also taken by means of a soil extractor type Uhland to determine soil bulk density, required to convert data to volumetric soil-water content. For laboratory WRC soil samples were collected with undisturbed structure also by means of soil extractor type Uhland. The water tension used were 2, 4, 6, 8 and 10 kPa in porous plate funnels, and tensions of 33, 50, 100, 300, 600, 900, 1200 and 1500 kPa porous plate pressure chamber. All samples were collected in triplicate. Finally, the calculations of hydraulic conductivity by van Genuchten\'s model were made. According to the results, it can be concluded that: (a) the methodology for determining field WRC was satisfactory, as well as its adjusting by the equation used by van Genuchten in his method of relative hydraulic conductivity, Kr, estimation with ever determination coefficients always greater than 0.9; (b) the Kr values obtained by the method of van Genuchten when using the laboratory WRC were always higher as compared to the values obtained with the field WRC; and (c) in the IPM, it is necessary to know the soil-water content along the soil profile, during the process of water redistribution, and one of the ways to estimate the water content is through the WRC. Based on the obtained results and given the first conclusion, it can be said that when using WRC to estimate the water content in the IPM, the use of the field WRC should provide more realistic results for K(θ).
|
3 |
Curva de retenção de água no solo determinada a partir de um número mínimo de pares de umidade e tensão na câmara de Richards / Soil water retention curve determined by a minimum number of water content and water potential pairs in Richards\' chamberGrigolon, Gilmar Batista 27 November 2012 (has links)
O conhecimento do comportamento físico-hídrico do solo é fundamental para sua caracterização. Dentre elas, a determinação da curva de retenção de água é o processo que costuma ser mais oneroso e demorado. Várias tentativas estão sendo estudadas no sentido de minimizar custo e tempo para a obtenção desta curva. A escolha do número e da combinação de pontos, ou seja, dados de umidade e correspondente tensão da água no solo, utilizados para a determinação da curva de retenção, normalmente é feita de forma arbitrária, contudo, a demora na obtenção da curva de retenção, aliada ao valor considerado alto para pequenos irrigantes, são na maioria das vezes, um empecilho para que o agricultor realize esta análise. O objetivo deste trabalho foi definir o menor número e a melhor combinação de pares de umidade e tensão de água no solo que resulte na descrição de uma curva de retenção de água do solo confiável. Para a realização da pesquisa, foram utilizados dois tipos de solos com granulometrias distintas, (arenoso e argiloso). Foram realizadas nove repetições, para cada tipo de solo, as quais foram submetidas a diferentes tensões pelo método da câmara de Richards e ajustadas pelo modelo de van Genuchten. Realizaram-se curvas contendo 4, 5, 7, 8, 9, 10 e 13 pontos de tensão, sendo que a curva que contem 13 pontos foi adotada neste estudo como referência (A1) na comparação com as demais. A análise estatística foi gerada inicialmente sobre os dados brutos das umidades do solo observadas para todas as repetições, calculando-se os coeficientes de variação para os parâmetros do modelo de van Genuchten. Posteriormente, entre os dados observados e ajustados pelo modelo, foram determinados índices estatísticos comparativos. Finalmente, os parâmetros obtidos de vários pares de umidade e correspondente tensão de água no solo obtidos na câmara Richards foram comparados aos parâmetros equivalentes da curva referência (A1) e submetidos à análise de variância (teste F), e suas médias comparadas pelo teste de Scott-Knott a 5%. A curva de retenção de água no solo com 7 pontos, elaborada com as tensões 0, 40, 100, 300, 1.000, 5.000 e 15.000 hPa, foi a que mais se aproximou da curva de referência A1, não apresentando diferença estatística em nenhum dos parâmetros do modelo. / The knowledge of the soil hydrophysical behavior is critical for characterizing its physical properties. Among them, the determination of the soil water retention curve is often the most expensive and the most time consuming. Many attempts have been tried in order to minimize the cost and the time to obtain this curve. The choice of number and combinations of points to be taken, i.e., water content and its corresponding water potential in soil, used to determine the soil water retention curve, is usually made arbitrarily, however, the delay in obtaining the curve, coupled with the cost considered high to small irrigators, are mostly an obstacle for the farmer to carry out this analysis. The objective of this work was to define the smallest number and the optimal combination of water content and water potential pairs that result in a trustable soil water retention curve. To carry out this research, two types of soils with contrasting textures were used (sandy and clay soil). For each type of soil, nine repetitions were submitted to different tensions by the Richards chamber method and adjusted by the equation of van Genuchten. Curves with 4, 5, 7, 8, 9, 10 e 13 tension points were made, taking the 13-point curve as a standard (A1) in comparison to the others. Initially, the statistical analysis was performed on the raw data of the observed water contents for all the repetitions, calculating the variation coefficient for the van Genuchten equation parameters. Subsequently, statistical indices of comparison were used between the observed and adjusted data. Lastly, the obtained parameters for different pairs of water content and its corresponding water potential in Richards\' chamber were compared to the equivalent parameters of the standard curve (A1) and submitted to the analysis of variance (F test), and their mean values were compared by the Scott-Knott test (5% of probability). The 7-point soil water retention curve, using the tensions of 0; 40; 100; 300; 1,000; 5,000 e 15,000 hPa, was the closest one to the standard curve A1, showing no statistical difference in any parameters of the model.
|
4 |
Condutividade hidráulica do solo a partir da curva de retenção de laboratório e de campo / Soil hydraulic conductivity from laboratory and field soil-water retention curveCezar Augusto Medeiros Rebouças 25 August 2016 (has links)
Os métodos indiretos de determinação da condutividade hidráulica do solo em função do conteúdo de água no solo apresentam relevante vantagem pela redução de tempo e custo. No entanto, quando são comparados aos métodos de determinação em campo, seus valores não satisfazem as reais condições. Assim, com este trabalho, objetivou-se comparar resultados da condutividade hidráulica pelo modelo de van Genuchten a partir da curva de retenção, CRA, determinada no laboratório e em campo, assim como indicar a melhor maneira de estimar o conteúdo de água no solo a partir de leituras tensiométricas quando se usa a CRA no método do perfil instantâneo, MPI. O experimento foi conduzido em quatro profundidades de um Latossolo e de um Nitossolo, que correspondiam aos seus respectivos horizontes pedológicos. Para confecção da CRA em campo, foi instalado, no centro de cada horizonte, um tensiômetro com manômetro de mercúrio, para determinação da tensão da água, e coletadas, de cada profundidade, amostras de solo com estrutura deformada às tensões de 2, 4, 6, 8, 10, 20, 30, 40 e 50 kPa, para determinação do conteúdo gravimétrico de água; foram retiradas também, de cada profundidade, amostras com estrutura indeformada, por meio de um extrator do tipo Uhland, para determinação da densidade do solo, necessária para conversão dos dados para conteúdo volumétrico de água. Para a CRA em laboratório foram coletadas amostras de solo com estrutura indeformada também por meio de extrator do tipo Uhland. As amostras foram submetidas às tensões de 2, 4, 6, 8 e 10 kPa em funis de placa porosa, e para as tensões de 33, 50, 100, 300, 600, 900, 1.200 e 1.500 kPa em câmara de pressão com placa porosa. Todas as amostras foram coletadas em triplicata. Por fim, procedeu-se com os cálculos da condutividade hidráulica pelo modelo de van Genuchten. De acordo com os resultados obtidos, pode-se concluir que: (a) a metodologia de determinação da CRA no campo mostrou-se satisfatória, assim como o seu ajuste pela equação utilizada por van Genuchten no seu método de determinação da condutividade hidráulica relativa, Kr, com coeficientes de determinação sempre maiores que 0,9; (b) os valores da Kr obtidos pelo método de van Genuchten quando se utilizou a CRA de laboratório foram sempre maiores em relação aos valores obtidos com a CRA determinada no campo; e (c) no MPI há necessidade de se conhecer o conteúdo de água no solo ao longo do perfil durante o processo de redistribuição da água, e uma das maneiras de se obter esse conteúdo é por meio da CRA; com base nos resultados obtidos e em face à primeira conclusão, pode-se dizer que quando se utiliza a CRA para estimar o conteúdo de água pelo MPI, a utilização da CRA determinada no campo deve fornecer resultados mais realísticos da função K(θ). / The use of indirect methods to determine the soil hydraulic conductivity as a function of soil-water content is very advantageous because of the reduction of time and cost. However, when compared with field methods, values do not satisfy the actual conditions. So, the objective this work was to compare results of hydraulic conductivity by van Genuchten\'s model from the water retention curve, WRC, determined in the laboratory and in the field, well as indicate the better way to estimate the soil-water content from tensiometer readings using WRC, in the instantaneous profile method, IPM. The experiment was carried out in four depths of an Oxisol and a Nitosol, corresponding to their pedological horizons. To obtain the field WRC, a mercury manometer tensiometer was installed in the centre of each horizon, for the determination of the soil-water tension, and disturbed soil samples were collected at tensions of 2, 4, 6, 8, 10, 20, 30, 40 and 50 kPa, to determinate the gravimetric soil-water content; undisturbed soil samples were also taken by means of a soil extractor type Uhland to determine soil bulk density, required to convert data to volumetric soil-water content. For laboratory WRC soil samples were collected with undisturbed structure also by means of soil extractor type Uhland. The water tension used were 2, 4, 6, 8 and 10 kPa in porous plate funnels, and tensions of 33, 50, 100, 300, 600, 900, 1200 and 1500 kPa porous plate pressure chamber. All samples were collected in triplicate. Finally, the calculations of hydraulic conductivity by van Genuchten\'s model were made. According to the results, it can be concluded that: (a) the methodology for determining field WRC was satisfactory, as well as its adjusting by the equation used by van Genuchten in his method of relative hydraulic conductivity, Kr, estimation with ever determination coefficients always greater than 0.9; (b) the Kr values obtained by the method of van Genuchten when using the laboratory WRC were always higher as compared to the values obtained with the field WRC; and (c) in the IPM, it is necessary to know the soil-water content along the soil profile, during the process of water redistribution, and one of the ways to estimate the water content is through the WRC. Based on the obtained results and given the first conclusion, it can be said that when using WRC to estimate the water content in the IPM, the use of the field WRC should provide more realistic results for K(θ).
|
5 |
Curva de retenção de água no solo determinada a partir de um número mínimo de pares de umidade e tensão na câmara de Richards / Soil water retention curve determined by a minimum number of water content and water potential pairs in Richards\' chamberGilmar Batista Grigolon 27 November 2012 (has links)
O conhecimento do comportamento físico-hídrico do solo é fundamental para sua caracterização. Dentre elas, a determinação da curva de retenção de água é o processo que costuma ser mais oneroso e demorado. Várias tentativas estão sendo estudadas no sentido de minimizar custo e tempo para a obtenção desta curva. A escolha do número e da combinação de pontos, ou seja, dados de umidade e correspondente tensão da água no solo, utilizados para a determinação da curva de retenção, normalmente é feita de forma arbitrária, contudo, a demora na obtenção da curva de retenção, aliada ao valor considerado alto para pequenos irrigantes, são na maioria das vezes, um empecilho para que o agricultor realize esta análise. O objetivo deste trabalho foi definir o menor número e a melhor combinação de pares de umidade e tensão de água no solo que resulte na descrição de uma curva de retenção de água do solo confiável. Para a realização da pesquisa, foram utilizados dois tipos de solos com granulometrias distintas, (arenoso e argiloso). Foram realizadas nove repetições, para cada tipo de solo, as quais foram submetidas a diferentes tensões pelo método da câmara de Richards e ajustadas pelo modelo de van Genuchten. Realizaram-se curvas contendo 4, 5, 7, 8, 9, 10 e 13 pontos de tensão, sendo que a curva que contem 13 pontos foi adotada neste estudo como referência (A1) na comparação com as demais. A análise estatística foi gerada inicialmente sobre os dados brutos das umidades do solo observadas para todas as repetições, calculando-se os coeficientes de variação para os parâmetros do modelo de van Genuchten. Posteriormente, entre os dados observados e ajustados pelo modelo, foram determinados índices estatísticos comparativos. Finalmente, os parâmetros obtidos de vários pares de umidade e correspondente tensão de água no solo obtidos na câmara Richards foram comparados aos parâmetros equivalentes da curva referência (A1) e submetidos à análise de variância (teste F), e suas médias comparadas pelo teste de Scott-Knott a 5%. A curva de retenção de água no solo com 7 pontos, elaborada com as tensões 0, 40, 100, 300, 1.000, 5.000 e 15.000 hPa, foi a que mais se aproximou da curva de referência A1, não apresentando diferença estatística em nenhum dos parâmetros do modelo. / The knowledge of the soil hydrophysical behavior is critical for characterizing its physical properties. Among them, the determination of the soil water retention curve is often the most expensive and the most time consuming. Many attempts have been tried in order to minimize the cost and the time to obtain this curve. The choice of number and combinations of points to be taken, i.e., water content and its corresponding water potential in soil, used to determine the soil water retention curve, is usually made arbitrarily, however, the delay in obtaining the curve, coupled with the cost considered high to small irrigators, are mostly an obstacle for the farmer to carry out this analysis. The objective of this work was to define the smallest number and the optimal combination of water content and water potential pairs that result in a trustable soil water retention curve. To carry out this research, two types of soils with contrasting textures were used (sandy and clay soil). For each type of soil, nine repetitions were submitted to different tensions by the Richards chamber method and adjusted by the equation of van Genuchten. Curves with 4, 5, 7, 8, 9, 10 e 13 tension points were made, taking the 13-point curve as a standard (A1) in comparison to the others. Initially, the statistical analysis was performed on the raw data of the observed water contents for all the repetitions, calculating the variation coefficient for the van Genuchten equation parameters. Subsequently, statistical indices of comparison were used between the observed and adjusted data. Lastly, the obtained parameters for different pairs of water content and its corresponding water potential in Richards\' chamber were compared to the equivalent parameters of the standard curve (A1) and submitted to the analysis of variance (F test), and their mean values were compared by the Scott-Knott test (5% of probability). The 7-point soil water retention curve, using the tensions of 0; 40; 100; 300; 1,000; 5,000 e 15,000 hPa, was the closest one to the standard curve A1, showing no statistical difference in any parameters of the model.
|
6 |
Transfert de masse en milieux poreux : modélisation, analyse de sensibilité et estimation de paramètres appliquées à deux études de cas / Mass transfer in porous media : modelling, sensitivity analysis and parameter estimation applied to two remediation facilitiesMoezzibadi, Mohammad 28 September 2018 (has links)
Des analyses de sensibilité et des estimations de paramètres sont étudiées sur deux études de cas de transfert de masse en milieu poreux. La première partie est consacrée à la sensibilité des écoulements souterrains dans une modélisation des échanges drain-aquifère pour mettre en évidence les différences entre les deux méthodes de discrétisation mises en œuvre. La seconde partie est dédiée à la modélisation de l’écoulement en milieu poreux variablement saturé dans une zone humide artificielle, au calage des paramètres du modèle de van Genuchten-Mualem et à l’évaluation de son efficacité à reproduire des données piézométriques collectées sur le site de l’Ostwaldergraben. La variabilité temporelle des paramètres hydrodynamiques, incluant l’effet d’hystérésis, montre que ceux de la couche active du filtre changent au cours du temps. Ces deux études sont conduites à l’aide de la différenciation automatique. / Sensitivity analyses and parameter estimation are applied to mass transfer in porous media for two remediation facilities. The first part is devoted to the sensitivity analysis of groundwater flows in a modeling of drain-aquifer exchanges to highlight the differences between the two implemented methods of discretization. The second part is dedicated to the modeling of the flow in a variably saturated porous medium in a stormwater constructed wetland, to the calibration of van Genuchten-Mualem parameters and to the evaluation of its efficiency in the reproduction of piezometric data collected on the Ostwaldergraben site. The temporal variability of the hydrodynamic parameters, including the hysteresis effect, shows that the characteristics of the filter layer alters along time. Both studies are carried using automatic differentiation.
|
7 |
Numerisk modellering av deformationer och portryck i en experimentdamm : Jämförelse mellan in-situmätningar och FE-simuleringar i PLAXIS 2D / Numerical modelling of deformations and pore pressures in an experimental embankment dam : Comparison between in-situ measurements and FE simulations in PLAXIS 2DSjödin, Adam January 2021 (has links)
Under hösten 2019 har Vattenfall Research & Development byggt en experimentell jordfyllningsdamm i Älvkarleby med dimensionerna 20x15x4 meter. Delar av experimentdammen är konventionellt konstruerade och har installerats med geoteknisk utrustning som utgörs av bland annat inklinometrar och portrycksgivare. Andra delar av experimentdammen har byggts in med defekter som ska representera åldersrelaterade skador eller utförandefel vid konstruktion. Experimentdammen ger möjlighet att under realistiska och kontrollerade förhållanden studera det mekaniska beteendet i samband med fyllning av vatten och vidare drift med hjälp av den geotekniska instrumenteringen samt med stöd av numerisk modellering. I detta examensarbete, som utgör en del av Luleå tekniska universitets forskningsprojekt mot experimentdammen, har experimentdammens beteende i form av deformationer och portryck studerats under uppfyllnad och drift fram till sommaren 2021. Detta har utförts genom simuleringar i det finita elementprogrammet PLAXIS 2D 2019 för en tvärsektion av experimentdammen i plant-deformationstillstånd. Mätpunkterna i modellen har baserats på faktisk placering av den geotekniska instrumenteringen. Den finita elementmodellen av experimentdammen har konstruerats och fyllts med vatten enligt dokumentation från fält. En flödes-deformationsanalys, med den konstitutiva modellen Hardening Soil och den hydrauliska modellen van Genuchten, har tillämpats för att modellera den simultana utvecklingen av portryck och deformationer under uppfyllnad. Materialparametervärden för den finita elementmodelleringen har erhållits från Vattenfall R&D, relevant litteratur och från fält- och laboratorieförsök. I fält har vattenvolymeterförsök utförts på tätkärnan och i laboratoriemiljö har modifierad proctorpackning, dränerade konventionella triaxialförsök, permeabilitetsförsök och övertryckskapillarimeterförsök utförts på tätkärnans material. Resultatet från övertryckskapillarimeterförsök har anpassats mot den hydrauliska modellen van Genuchten för att uppskatta en vattenbindningskurva som beskriver det icke-linjära förhållandet mellan jordens vatteninnehåll och porundertryck, det vill säga det omättade förhållandet. Vattenbindningskurvor för övriga materialzoner har uppskattats baserat på litteratur. Verktyget PLAXIS SoilTest har använts för att optimera materialparametervärden för tätkärnan mot resultat från utförda triaxialförsök. Materialparametrarna E50ref, Eoedref, Eurref, m, c, och ϕ har optimerats fram till brott i triaxial belastning. En känslighetsanalys har utförts för reduktion av filterzonernas och stödfyllningens styvhetsmoduler och deras inverkan på horisontella deformationer i dammkroppen under uppfyllnad. Känslighetsanalysen indikerar att finfiltrets styvhetsmoduler har störst inverkan och grovfiltrets styvhetsmoduler har minst inverkan på de horisontella deformationerna. Studiens resultat visar att magnituden av horisontella och vertikala deformationer kommer vara som störst i den övre delen av dammkroppen och uppgår där till 3,5 respektive 4,0 mm. Dammkroppens huvudsakliga rörelse kommer vara i nedströms riktning och det observerades hur en kontaktzon mellan uppströms filterzon och tätkärnan utgör en gräns för riktning av deformationer. Faktiskt uppmätta rörelser i installerade inklinometrar kunde inte jämföras mot deformationer i den finita elementmodellen eftersom författarens tolkning indikerar på att botten av inklinometrarna har rört på sig, och mätpunkterna i botten av modellen är fixerade. Modellen visar hur en fördröjd utveckling av vattenmättnad sker genom tätkärnan, där uppströms sida av tätkärnan reagerar snabbare på förändringar i vattennivå jämfört med nedströms sida av tätkärnan som uppvisar en fördröjd respons. Vid en sänkning av vattennivån observerades hur tätkärnan håller kvar vatten ovan portryckslinjen medan de grövre materialen dränerar i takt med vattennivåns sänkning. Utvecklingen av de simulerade portrycken i modellen under uppfyllnad och drift överensstämmer bra med de uppmätta portrycken i experimentdammen, när portrycken är positiva. Det observeras hur den finita elementmodellen överskattar negativa portryck (porundertryck). Portrycken i modellen når ett stadigt tillstånd ungefär 115 dagar efter att fyllningen av vatten påbörjats. Den finita elementmodellen lyckas att återge det teoretiska beteendet av jordfyllningsdammar under fyllning i form av huvudsakliga riktningar av deformationer och utveckling av vattenmättnad i tätkärnan. Denna studie bidrar till en djupare förståelse för experimentdammens, och i allmänhet jordfyllningsdammars, mekaniska beteende under uppfyllnad. Resultaten från den finita elementmodellen kan ur ett dammsäkerhetsperspektiv användas för erhålla indikationer på utvecklingen av deformationer, portryck och vattenmättnadsgrad i jordfyllningsdammar under uppfyllnad, och även under en tillfällig sänkning av vattennivån under den första fyllningen. Studien ger också indikationer på vilka materialparametrar som är viktiga vid numerisk modellering av mekaniskt beteende i jordfyllningsdammar. / During the autumn of 2019, Vattenfall Research & Development constructed an experimental embankment dam in Älvkarleby with the dimensions 20x15x4 metres. Parts of the experimental dam are conventionally constructed and have been equipped with geotechnical instrumentation which consist of, among other things, inclinometers and pore pressure transducers. Other parts of the experimental dam have built in defects to represent age-related damages or execution errors during construction. The experimental embankment dam provides the opportunity to, under realistic and controlled conditions, study the mechanical behaviour during filling of water and operation by means of the geotechnical instrumentation and the use of numerical modelling. In this master’s thesis, which forms part of Luleå University of Technology’s research project towards the experimental dam, the behaviour of the experimental dam in terms of deformations and pore pressures have been studied during filling and operation until the summer of 2021. This has been performed by simulations in the finite element program PLAXIS 2D 2019 for a cross section of the experimental dam under plane-strain conditions. Measuring points in the model have been based on the actual location of the geotechnical instrumentation. The finite element model of the experimental dam has been constructed and filled according to documentation from field. A fully-coupled flow deformation analysis, with the constitutive model Hardening Soil and hydraulic model van Genuchten, has been utilised to model the simultaneous development of pore pressure and deformations during filling. Values of material parameters for the finite element modelling have been received from Vattenfall R&D, relevant literature and from field- and laboratory tests. In the field, balloon tests have been performed on the core material. In laboratory environment, modified proctor compaction tests, drained conventional triaxial tests, permeability tests and pressure plate tests have been performed on the core material. Results from the pressure plate tests have been adapted to the hydraulic model van Genuchten to estimate a soil-water characteristic curve in order to describe the non-linear relation between the water content and suction in the soil, i.e. unsaturated conditions. Soil-water characteristic curves for the other material zones have been estimated based on literature. The tool PLAXIS SoilTest has been used to optimise material parameter values of the core against the results from conducted triaxial tests. The material parameters E50ref, Eoedref, Eurref, m, c, and ϕ have been optimised until failure in triaxial loading. A sensitivity analysis has been carried out, by reducing stiffness moduli of the filter zones and the shoulder material, to investigate the influence on horizontal deformations in the dam body during filling. The sensitivity analysis indicates that the stiffness moduli of the fine filter have the largest impact and the stiffness moduli of the coarse filter have the least impact on the horizontal deformations. The results of the study show that the magnitude of horizontal and vertical deformations will be largest in the upper part of the dam body and amounts to 3.5 and 4.0 mm, respectively. The main movement of the dam body will be in the downstream direction and it was observed how a contact zone between the upstream filter zone and the core forms a boundary for direction of deformations. Actual measured movements in the installed inclinometers could not be compared to deformations in the finite element model because the author’s interpretation indicates that the bottom of the inclinometers have moved, and the measuring points at the bottom of the model are fixed. The model shows how a delayed development of saturation occur through the core, where the upstream side of the core responds more quickly to changes in water level compared with the downstream side of the core which show a delayed response. At a lowering of the water level, it was observed how the core retains water above the phreatic line while the coarser materials drain as the water level decreases. Development of the simulated pore pressures in the model during filling and operation corresponds well with the measured pore pressures in the experimental dam, when the pore pressures are positive. It is observed how the finite element model overestimates negative pore pressures (suction). The pore pressures in the model reaches a steady state approximately 115 days after filling of water started. The finite element model succeeds in reproducing the theoretical behaviour of embankment dams during filling in terms of main directions of deformations and development of saturation in the core. This study contributes to a deeper understanding of the experimental dam, and in general mechanical behaviour of embankment dams during filling. The results from the finite element model can be used from a dam safety perspective to obtain indications on the development of deformations, pore pressures and degree of saturation in embankment dams during filling, and also for a temporary lowering of the water level during the first filling. The study also provides indications of which material parameters that are of importance in numerical modelling of mechanical behaviour in embankment dams.
|
8 |
Stanovení hydraulických charakteristik půdy ve vybrané lokalitě / Determination of soil hydraulic characteristics in the selected locationStoklásková, Adéla January 2012 (has links)
This thesis deals with direct and indirect determination of soil hydraulic characteristics (retention curve and hydraulic conductivity) in the locality of Bohaté Málkovice. For laboratory determination of soil moisture retention curve is used sand tank and pressure relief device. For the indirect determination of soil hydraulic characteristics is used computer software Rosetta, which includes 5 models of pedotransfer functions. For estimatiton of retention curves are applied previously derived pedotransfer function (continuous parametric PTF and point PTF).
|
Page generated in 0.0705 seconds